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Abstract. Atomistic simulation tschniques are applied to the study of crystailine BaO3. New
interatomic potentials are derived by fitting to ab initio energy surfaces derived from both
periodic boundary conditions and molecular calculations, to which we add the restraints produced
by the observed crystal structures. A novel approach based on linear programming (LP)
methodology is used in these fitting procedures. We find that the best potentials have terms
which are coordination number dependent. Our potentials are able to reproduce the crystal
structures of both polymorphs of B20O3. Moreover, we predict the stability of new polymorphs
with high boroxol ring contents which may be related to the structures of vitreous phases.

1. Inéroduction

Boric oxide and borates have a highly complex structural chemistry, and there is a long-
standing controversy concerning the structural properties of vitreous B;0s {1]. For this
reason there is a strong incentive to develop good procedures for modelling structures and
properties of these materials using computational methods. In this paper we focus on the
derivation of fliexible and transferable interatomic potentials for the modelling of B2O5 and
borates. Several interatomic potentials kave been reported for the study of vitreous structures
of B»O3;. However, no attempts have been made to model the crystal structures of B,0s.
The approach used in this paper is based on the fact that crystal structures have much
information on bonding; moreover, we consider that it is necessary to derive interatomic
potentials that reproduce several different crystal structures before proceeding to model
vitreous materials, the subject of part 2 of this study.

We first, therefore, describe the background to atomistic simulation techniques and
interatomic potential models of the type used in this study, with an emphasis on the
difference between them and the quantum-mechanical techniques discussed in companion
studies of B,0j3 [2, 3). Next, in order to overcome the difficulties in deriving interatomic
potentials, a new procedure known as the LP fitting method is developed in which we derive
potentials from ab initio calculations subject to the restraints provided by the observed crystal
structures. The newly derived potentials obtained using this latter method are applied to
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the two crystal structures of B;O3 and are then compared with the potentials previously
reported for vitreous B2O3 by other authors. We use ab initio data both from periodic
boundary conditions calculations on the crystal structures and from calculations on relevant
small molecules. We show that the latter are unable to generate satisfactory potentials for
use in modelling crystal structures and properties—a result which has general implications
for the use of calculations on small molecules in investigating bonding in ionic and semi-
ionic solids. Finally, we apply our potentials to the investigation of the stability of novel
polymorphic structures of B,Os which may be closely related to those of the vitreous
materials,

2. Atomistic simulation techniques

Computer modelling techniques have made great progress in recenmt years and are
increasingly explaining or predicting the structures and properties of solids [4]. These
techniques may be classified into two groups: the first starts from the Schrdinger equation
and calculates the electronic structure of the system; the second develops interatomic
potentials and applies the resulting potentials to the system under study.

We have recently applied a range of electronic structure techniques to the study of
B203 and borates [2, 3]. These allowed us to model successfully the polymorphs of B2Os
and yielded useful information on the nature of the bonding in the materials. However,
in modelling complex structures such as vitreous solids, methods based on interatomic
potentials are needed. Indeed both lattice statics and dynamics have been extensively used
in simulating solids including ionic and semi-ionic materials [4-6]. The success of these
methods in modelling structures and properties of perfect and defective solids encourages
their application to the challenging structural problems posed by crystalline and amorphous
B,03.

3. Interatomic potential models

Many studies have been reported concerning interalomic potentials for oxide materials [5, 6].
We now discuss the functional forms and the methods used to derive appropriate parameters.

3.1. Potential functions

(Oxides have been commonly described by the ionic model with formal or partial ionic
charges assigned to point entities which also interact via short-range terms. The interactions
between point charges arise from the long-range electrostatic (Coulombic) forces between
ions, while the short-range interactions come from the overlap of the electron charge clouds
of the interacting ions.

The simplest and most widely used short-range form is the central-force pair-potential:

Vir, ra,....ma) = 3 Viliri = 7). (1)

The total potential energy V is summed over all the pair interaction terms, each of which
is dependent only on the distance between the ions.

The most widely used function form for pair-potentials for ionic solids is the
Buckingham potential:

V(r;) = Ay exp(—ri/py;) — Cyr®. (2)
The second term is often added to express dispersion and other attractive terms.
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Another commonly used functional form, which is considered to be suitable for
modelling the effect of covalent bonding is the Morse potential:

V(ry) = Dij{l — exp[—By(r; — ro)l} 3)
Although models using these pair-potentials have reproduced reasonably well not only
structures but also properties of oxide materials, more sophisticated models are needed
to include polarization or covalent bonding effects more precisely.

Polarizability is described straightforwardly and effectively using the shell model [7] in
which an ion is described as comprising a massless shell of charge ¥, and a core in which
the mass is concentrated; a harmonic spring connects the shell with the core. This model
has allowed accurate calculations of dielectric, lattice-dynamical and defect properties of
ionic solids [3, 6].

In order to express the directional properties of covalent bonding, a three-body term
may be added, the most common of which is the simple- harmonic, bond-bending form:

V(@) = s Kp(6 — )’ 4)

where K g is the bond-bending force constant and 4, is the equilibrium bond angle.

For crystalline silicates, simple pair-potential models have been used [8, 9]. But the
greatest success has been enjoyed by shell model potentials, including three-body terms [10,
11], which have performed well in modelling the structures and properties of a wide range
of crystalline and amorphous materials [4, 6].

3.2. Derivation of interatomic potentials

Interatomic potentials have been derived by two main procedures. The first is the empirical
method. The parameters in the potential model are fitted so that they can reproduce
the experimental structures and/or properties (e.g. elastic constants, dielectric constants or
vibrational properties) as accurately as possible. This method may be applied even when
the only data available are the crystallographic parameters, although it is important to use
as many data as possible for fitting and testing potential models.

The other approach is to use non-empirical or semi-empirical methods, employing
guantum-mechanically calculated data for the relevant potential energy surfaces. In the
electron gas method [12], electron densities are calculated for the isolated interacting
atoms, and then the Coutomb interactions. the kinetic energy, exchange and correlation
contributions to the interaction energy are calculated. Ab initio methods are, however,
increasingly employed on clusters or periodic arrays of atoms. For example, using the ab
initie, periodic Hartree—Fock techniques available in the CRYSTAL code, Gale et al [13]
cbtained a potential energy surface to which they fitted a potential which then reproduced the
structure and elastic constants of - Al O;. In the case of cluster calculations, the importance
of crystal field effects must be stressed. For example, electron-gas studies commonly
introduce the Madelung potential appropriate to the crystal when the wavefunctions are
calculated [14]. In addition, we should also note that several ‘ab inifio’ studies [8, 9] were
obliged to use experimental data on elastic constants to determine the partial charge values.

One of the most important aspects concerning a potential model is its transferability,
Some potentials successfully reproduce the structures of several polymorphs using the same
potentials [8, 15]. Moreover, it has been found that potentials fitted to the crystal structure
and properties of Si0; when applied to vitreous states yield models which reproduce
successfully the experimental RDFs [16]. The degree of transferability of interatomic
potentials is, however, commonly a matter of controversy and uncertainty. Careful attention
will be paid to this feature in the potentials reported later in this paper.
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4, Application of previously reported potentials to crystalline B,O;

As noted earlier several potential models have been reported specifically for vitreous B;O;
[17-23]. In particvlar, seven potentials were derived by Verhoef and den Hartog [23]
which have more general functional forms. They were modified from the ‘V1' potentials
of Soules [17, 18] and the V5’ potential of Xu et al [22]. All seven potentials have the
same Born-Mayer—Huggins form:

Vii(r) = Ay exp(=r/pij) + aig;e* /7, (5)
The V2 potential was modified from the V1 potential by Verhoef and den Hartog so that
correct vibrational frequencies were obtained. The V3 potential had the same pair-potential

component as the V2 potential and was supplemented with the O-B-O three-body bond-
bending term of the form:

Vigk(6) = 5 Kijs(6 — 8o’ (6)
where 8 is 120° for O-B-0O and 130° for B-O-B. The B—O-B three-body term was also
added in the V4 potential. In the same manner, the pair-potential parts of the V6 and
V7 potentials were modified from the V5 potential to obtain correct frequencies, and the
B-O-B three-body term was added to the V7 potential. The potential parameters are given
in table 1.
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Figure 1. The structure of B2Q3-1 [241.

These potentials do not appear to have been evaluated with respect to their ability to
reproduce the propertics of the crystalline phases of B;03;. We therefore used them in
lattice energy minimizations, starting from the experimental structure of B203-1 (figure 1)
[24) and B,04-I1 (figure 2) [25]; for this purpose we employed the GULP code, which can
perform a variety of lattice statics (including full minimizations) and dynamics calculations
[26]1. As the original potentials were not applied to fourfold-coordinated boron atoms, the
equilibrium angle & in the O-B-0 three-body interactions is set to be 109.47° in B,0;-IL
The calculated results are shown in tables 2 and 3. They may be summarized as follows:

(i} For the struciure of B2O3-1, potentials V4, V5, V6, and V7 reproduce the experimental
lattice parameters, B—O bond lengths and O-B-O bond angles reasonably. However, none
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Figure 2. The structure of B203-11 [25].

Table }. Pair-potential and three-body parameters in the potentials of Verhoef and den Hartog
{23]. A, and py, represent short-range parameters. 4, and K;_;_; represent the charge and
bond-bending force constants respectively.

Agp Apo Ao pER  PRO Poor Ko-p-0 Kp-o-8
Case (10° KJ mot~") (&) an 4o (kJ rad~2)
Vi 134 78.63 182.3 029 (.29 0.29 390 -2.0 0 0
V2 9.614 3372 79.63 0.29 029 0.29 20 —1.333 0 0
V3 9.614 3372 7963 0.29 0.29 0.29 20 -1.333 1000 0
V4 6.614 3372 79.63 0.29 0.29 0.29 2.0 —-1.333 1000 500
V5 5.424 1052 149700 Q.16 0.165 0.17 3.0 -2.0 0 0
Ve 0.6645 128.8 18330 16 0.165 Q.17 1.05¢ —-0.7 g 0
V7 0.6645 128.8 18330 0.16 0.165 0.17 1.050 0.7 1500 M)

of themn can reproduce the B—-O-B bond angles. Even for potential V4, which includes
the B—O-B three-body term, the B1-O1-B2 angle is still 8° larger than the experimental
value, This result explains why the B-O-B bond angles obtained in MD simulations using
these potentials were always large. However, the reproduction of the B—-O-B bond angles
is crucial for correctly describing the manner of connection of the BOj; triangles—a key
feature of the structural chemistry of these materials as discussed later, In this context
it is interesting to note that potentials which cannot reproduce the B-O-B bond angles
do not predict accurate experimental densities of B,03-1, even if they can reproduce the
experimental bond lengths.

(ii) None of the potentials can reproduce the structure of B;0s-I1, indicating that the
bonding for the fourfold-coordinated boron atom is different from that for the threefold-
coordinated atoms. Even potential V5, which used in its derivation the crystal structure of
the alkaline borate KBsO3 which comprises BO; teirahedra, cannot adequately reproduce
this structure. The explanation is probably in the difference in the bonding. Indeed we
have shown that there is a considerable difference in the ionicity and the nature of the
bonding between B,0s-1I and the alkaline borates [2, 3]. It is interesting to note that these
potentials do not lead to the generation of a BO;-type environment in molten B;O;; but the
nature of the structural transformation in BoOs may be different from the observed trigonal
to tetrahedral conversion of boron on the addition of alkaline oxide. This point will be
discussed further in subsequent papers which model the structure of vitreous B2O;.

Overall, however, it is clear from the results summarized in this section that previously
published potentialg have severe deficiencies regarding their ability to reproduce observed
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crystal structures of two phases of B2O3. Improved models are needed if we are to model
vitreous phases of this material.

Table 2. Static lattice simulations of the structure and properties of B2Os-1 using previously
reported potentials [23]. The values in angle brackets were obrained from the experimentally
observed structures [24].

Potential sets for static lattice simulation

Vi V2 v3 \'Z] V5 V6 V7
(i} Calculated latlice energies in experimentul (E]} and energy-minimized (E2) structures (eV/B201)
El —-17934 -8040 -80.20 —80.19 -—-202.26 —-2478 —24.48
E2 —-18225 -8170 -8L.70 —B0.80 -—203.91 —2498 2496

b( i }) %{:%e)lgy-minimized structure (ratin with respect to experimental value); unit-cell volume (v), lattice constants
(e by e

v +7949  +739% 47412 +610 4866 +864 4684
a +9.96 +884 +892 +262 +612 +611  +507
b +9.96 +996 4892 +262 4612 +6ll  +3507
e +48.44  +4685 +4678 +076 352 -352 -3
Bond length ()
Bl-OI £.378 1.364 1.364 1.394 1.348 1.348 1.376 {1.404)
BI-02 1378 1.364 1.364 1.370 1.406 1.406 1375 {1.366)
BI-03 1.372 1.358 1.358 1.383 1.408 1.408 1.408 {1.337)
B2-01 1.378 1.364 1.364 1.370 1.406 1 406 i.375 {1.336)
B2-02 1.378 1.364 1.364 1.394 1.348 1.348 1.376 {1.400)
B2-03 1372 1.358 1.358 1383 1.408 1.408 1.408 {1.384)
Bond angle (deg)
01-B1-02 119.8 119.8 119.9 119.7 120.2 i24.1 120.0 {119.0)
Q1-B1-03 120.1 120.1 120.0 121.4 124.1 124.1 1204 {147
02-B1-03 120.1 120.1 120.0 1186 115.4 1154 119.3 {126,013
01-B2-02 1193 119.8 119.9 1197 120.2 120.2 120.0 (121.5)
BI-01-B2 179.1 179.1 179.1 136.6 150.3 150.3 146.0 (130.5)
Bi-02-B2 179.1 179.1 179.1 136.6 150.3 150.3 146.0 {128.3)

(ki) Properiies for energy-minimized structures
Elastic constant (GPa)

E(l, 1) i67.8 7799 107.4 162.5 183.6 225 303

E(1,2) 718 33.0 37.3 45.0 317 39 =11
Bulk modulus (GPa}

K i03.8 479 60.7 84.2 82.3 10.1 94
Static dielectric constant (experiment: 3.0-3.5)

gfl, ) 2.14 2.17 1.90 2.64 2.78 2.78 1.83

£0(2, 2) 2.14 2.17 1.90 2.64 2.78 2.78 1.83

£0(3, 3) 2.12 2.18 1.58 6.40 3.49 349 2.53

1 Experimental values v = 135.8 15;3, a=5b=4336 A and ¢ = 8.340 A from [24].
b From [27].

5. New potential derivation method (LP fitting method)

5.1. Problems of existing fitting method

We first review the common method for fitting interatomic potentials, as in the widely used
codes (THBFIT [28] and GULP} which have been successfully applied to many systems.
The general method in such fitting procedures is as follows.

(1) Read in the experimental structures, properties and initial potential parameters.
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Table 3. Static fattice simulation of the structure and properties of BaO3-II using reposted
potentials [23]. The values in angle brackets are again from the experimentally observed structure

[25).
Paotential sets for static lattice simulation
{(Exparimental
Vi V2 V3 v4 v V6 V7 data)
{i) Calculated lattice energies in experimental (EI) and energy-minimized (E2) structires (eV/B203)
El —-179.39 —-80.39 —80.07 -—-79.38 -201.36 —24.67 -24.18
E2 —18220 -81.67 8098 —80.04 20470 -—25.08 -2484

b( i) Ene)ggy-minimized structure (ratic with respect to experimental value); unit-cell volume (v), lattice constanis
{a. b c) (%

v + 1193 +11672 +17.82 + 1515 +3050 +3848 + 1565
a +29.02 2898 +228 +226 +10.13 41013 +3.03
b +2902 42898 +228 +226 +10.13 1013 +3.03
¢ +15.34 + 1416 4827 4673 4874 4874 +58]
Bond length (A)
B1-01 1374 1.360 1360 L1371 1.363 1363 1412 {1.373)
B1-02 1.378 1363 1559 1538  1.399 1399 1546  {1.506)
B1-0% 1,363 1.577 L.542 1399 1399 1547 1508 {1.508)
B1-02" — — 1.603 L.656 —_ - 1.558 {1.512)
Bond angle {deg}

01-B1-02 1202 1202 1114 1081 1209 1206 1100 (1102
O1-B1-02 1202 1202 1103 1124 (209 1208 1100 {115.8)
O1-B1-02" — — oo 1110 — — 1099  (113.13
02-B1-02  — - 1097 1105 - — 1092 (167.4)
B1-01-Bi 180.0 180.0 1648 1461 1800 1800 1612 (1336
81-02-Bt 180.0 180.0 (214 (186 (800 1447 1204 (1187}

(iii) Properties fur energy-minimized structures
Elastic constunt (GPa)

ELLD 430.6 217.6 418.7 406.2 204.3 250.3 326.8

E(L2) 2.6 1.¢ 57.0 6.3 —42.1 -5.2 46.6
Bulk modulus (GPa)

K 161.9 732 1775 139.6 652.9 80.0 140.0
Static dielectric constant (experiment: 3. (-3.5)b

enfl, 213 217 2.26 2,02 2.00 2.00 144

£a(2, 2) 2.11 205 229 1.83 3.33 3.33 £.29

eat3, 3) 2.16 2.20 2.34 1.82 271 271 £.29

3 Experimental values v = 148.6 A%, e =4.613 A, » =7.803 A and ¢ = 4.129 A from [25].
b From {27).

(ii) Calculate the cell strains {¢(i)}; i = 1-6), internal strains (g;;(i, j); i = 1-N, j = 1-
3) and properties (C(i); i = 1-m).
(iii) Caiculate the weighted square sum of the errors §

S =3 wus@®+ Y wue jY + ) wi(CG) - Copli))? o)
i if t

where un,, wo;; and wy; are weighting factors which control the contribution of each term
to S and Cup(i) are the experimentally observed properties. :

(iv) Change the potential parameters in order to reduce the residual 5, via a least-squares
fitting algorithm.

(v) lterate from (ii) to (iv) until $ is minimized.

This approach can be used for a wide range of fitting problems and the procedure is
especially easily applied or refined when there are reasonable initial potential parameters.
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However, when this method was applied for B0y crystals, starting from either reported
potential parameters or from modified ones, we did not obtain acceptable potentials. In
most cases, the ‘best fit’ potential still distorts the experimental structure excessively.

The reasons for this problem are as follows.

(i) If an initial parameter set is poor, the least-squares fitting procedure will go to
the nearest local minimurn which is commonly not the desired solution. One possible
solution is to try as many initial sets as possible, but such a procedure may be unreliable
or computationally expensive.

(ii) The weighting factors strongly affect § and they easily change the variation of §
with the parameters, and may lead to an undesirable local minimum. In the case of a
layered system, even if quite small residuals of strain are obtained, they are enough to
distort its structure substantially. The other problem is that completely different types of
measurements (e.g. structure and properties) are subsumed under S, and it is not always
easy to set up the proper weighting factors appropriate for such different data.

(iii) The functional forms of the potentials may be unsuitable, although it is often difficult
to show unambiguously that the problems are arising from this factor.

One strategy to overcome these difficulties is to blend ab initio methods with empirical
fitting [8, 9]. Moreover, effective fitting procedures using this combined approach require
a new type of approach as discussed in the next section.

5.2. The linear programming (LP) fitting method

The LP fitting method is designed to it to ab initio surfaces with the added constraint of
requiring the reproduction of observed experimental structures, Moreover, the approach is
effective in overcoming several of the problems identified in the previous section.

First, regarding the problem of finding the global minimum, if the problem can be
linearized, the global minimum can be found within a finite number of iterations. The second
point is that separating the criterion of crystal stability from the evaluation of properties
can make the fitting problem much easier. It is also desirable that the experimental data
(such as the structural stability conditions} should be separated from the ab initic potential
energy data as components of the cost function. Moreover, when common potentials that
can reproduce several different structures at the same time are desired, the introduction
of independent sets of structural stability conditions is more reasonable than the use of a
unique formula for S. The third point is that it is very helpful to know whether a solution
of the problem is feasible, and also which condition obstructs the solution. In particular, it
is not clear how well the covalently bonded B2O; system can be described with the existing
potential functions.

These ideas lead to new potential fitting method based on the linear programming (LP)
method, which is a well-known technique in the field of economics and mathematics {29}
Several special considerations are given in order to adapt the potentiat fitting problem to
the general LP problem as follows.

(i) All the conditions that need to be satisfied are separated into two categories: the
first comprises several sets of inequality conditions; the second is a cost function which
should be minimized. The fitting procedure essentially involves the determination of the
optimum solution that minimizes the cost function within the solution space that satisfies
all the inequality relations.

(i1} The conditions of structural stability are defined in the form of inequality relations.
Here, the term ’structural stability’ means that the relaxed structure does not distort
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appreciably from the experimental structure. The lattice eneigy in the experimental structure
is the minimum point in the configurational space (3N-dimension) of the energy of the
crystal with respect to the coordinates of component ions.

Thus the lattice energy E depends on the atomic coordinates:

E='-E(X1,XQ,...,X,,) (8)

where the x; are the position vectors of the ith atom. The equilibrium condition requires
therefore:

3E/3x, =0 2Efox> >0 %)

at the structure of minimum energy (X1 = Xie, .., Xp = Xae)- We can therefore write that
YAxX:

E(xlm Xagy ooy Xie + Axl'i ey xne) > E(xle> Xogy vog Xies vy xﬂ:’) (]0)
and
E(xlev X2g+ s Xig — Axir ) xne) > E(X]e, X2gs vy Kigs o0y xne) (11)

must be satisfied. When the lattice parameters a, b, ¢, «, 8 and y (6 variables) and the »
atomic positions (z x 3 variables) are taken into account, a total of (6rn + 12) inequality
conditions is generated,

(iii) The weighted sum of the residuals between the ab iritio data for the potential energy
surface and the corresponding calculated values using the present values of the variables of
the poteatial parameters is defined as the cost function. Therefore, the LP method tries to
find the solution which achieves the global minimum for the residual within the solution
space that satisfies the structural stability conditions. However, there are limitations for
the application of the LP method. First, it is not easy to include the evaluation of various
physical properties in the cost functions, because within the LP scheme the complex form
of such properties must be linearized using the potential parameters. We also note that the
cost function must be the linear weighted sum of potential parameters instead of the square
weighted sum of them, as in conventional least-squares fitting; although this latter problem
poses no severe difficulties.

The most important point of the LP method is that the structural stability conditions are
not included in the cost function, but in the inequality relations. Therefore, the merit of this
method is that, even if the initial potential functions are poor in describing the structure,
the procedure yields a solution which maintains the structure in equilibrium, or it indicates
that there is no feasible solution.

(iv) Once the problem is described within the frame of LP, the solution is quickly
obtained even by a personal computer. The most significant problem with this method is
that the fitting problem must be linearized regarding the potential parameters. Inevitably
some parameters (€.g. the p parameter in Buckingham form in (2), or the 8 and 7 parameters
in Morse form in (3)) cannot be linearized simply and must remain fixed as constants during
one solution cycle. However, each solution cycle is very quick, allowing a thorough search
of a variety of combinations of e.g. p or 8 to be easily performed, in order to find the
global minimum.

The algorithm used by the LP fitting method comprises the following stages,
(i) Linearization of each of the terms of which the total lattice energy E is comprised:

E=E +E +E:+E4 (12)
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where E,, E2, E3 and E4 are the contribution of the Coulombic energy, pair-potential,
three-body and four-body terms.
For Coulombic terms, they are calculated straightforwardly from the crystal structure
and if fixed charges are used, they are dealt with as constants in the inequality relations.
In the case of short-range potentials specified using the Buckingham form:

Ep = Z{Au‘ oxp(=ry/p} — Cii/TH} = Ay {ZGXP(—W/D)} -G {Z 1/&3-} . (13)
i>j > i ]
The values in the outermost parentheses are calculated only from the erystal structures, and
are independent of the unknown variables A and C, when p is fixed.

In the case of the Morse form of the short-range potential, we have:

Ey=D;, {ZU — exp{—f; (ri; —To)}]z}- (14)
i=j
Once more the value in the outermost parenthesis is calculated only from the crystal
structures, and is independent of the unknown parameters D;; when §;; and rp are fixed.
For the simple harmonic three-body terms,

Ey=Kgp Y {30 — )} (15)
i=f=k
The value in the outermost parenthesis is again calculated only from the crystal structures,
and is independent of the unknown parameters Kg when &y is fixed. Four-body terms are
dealt with in the same way as the three-body terms.
(ii) Formulation of the inequality conditions for the structural stability condition:

E(X1e, o Xie £ AXyy ooy Xne) > E(X1ey oy Xiey oy Xne ). (16)

The coefficients of the unknown variables (A, C, D;; and K etc.) are calculated for each
structural configuration, and (6n <+ 12) sets of inequality relations are generated. As an
example, we consider one simple model for B;0s, which includes the Morse form for
the B-O interaction, the Buckingham form for the O-O interactions, and the three-body
term for the O-B-O interactions giving therefore four variables (Dg-¢, Ag~¢, Co-o and
Ko-p-g). The lattice energies for an experimental structure and any varied structure can
be arranged: for the experimental structure,

Eo=0up1Dp_o + oo 2A0-0 — %03Co-0 +0paKo-pa_0 >0 (17)
for any distorted structure,
Ei=a; Dpgotoizdo_0 ~2:3Co-0 +e4Kp_z-0 >0 (18)

where the e;, ; are calculated only from the erystal structure. Equation (14) provides one
inequality relation for its configuration:

(i — 1) Dp_o + (o2 ~ 002)Ap_o — (@3 — t93)Co0
+(ti4 —04)Ko-p-0 > 0. (19)

Among all the inequality relations, twelve come from the variations of the cell parameters
(adhLfa,bAtb,cAte,aAta, AL S, vA Ly), and 6an come from the variations of
internal coordinates (x; A £ x,, A £y, ;A £ ).
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(i1} Definition of the cost function §: the deviation between the ab initic data on the
potential energy surface and the corresponding value estimated from the linearized sum of
the parameters are summed up to give the cost function S.

5= w)E?— E| (20)

where w; is the weighting factor, and EI“"’ and E,.” ¢ are the energies derived from the ab
initio calculations and using the current values of the potential parameters. Usually all the
weighting factors are set to 1, and do not need to be changed.

{iv) Addition of the extra inequality conditions if necessary: for example, if the total
lattice energy is restricted within some specific range (for example, E,, < E and E < E
are given), two inequality relations are added in the same manner as in (ii). It is also very
easy to specify the difference of energies between several different structures (for example,
when the energy differences AEj; and AEj; between three polymorphic structures are
given, E| + AEj2 < E; and E; 4+ AEy; < E; are added) .

(v} Application of the general LP algorithm; the coefficients calculated from (i) to
(iv) generate the general matrix elements for LP and the variables are solved so that they
minimize the cost function § at the finite calculation steps.

(vi) Iteration from (i) to (v}, changing the non-lincar parts (e.g. p, 8, or ro) to yield
the solution which locates the global minimum. As many combinations as possible of the
unknown parameters are applied systematically.

We may compare this LP fitting method with the other general algorithms as follows.
The strengths of the method are first that it is especially suitable for the ill-conditioned
problem, where the crystal structure is apt to move toward a catastrophic change (for
example, in the case of layered or planar structures). Because the structural stability
conditions are absolutely satisfied during the solution, it can always prevent the distortion of
its structure. The method is also suitable for the simultaneous fitting of several structures,
because all the structural stability conditions are satisfied independently and simultaneously.
Secondly, when the linearized coefficients are output, the potential energy surface which
depends on the variables (A, C, D;; and Kg) can be easily analysed, because it is simply the
linear sum of these terms. In particular, when a satisfactory potential cannot be obtained, it
is straightforward to find which stability condition obstructs the solution. Thirdly, the global
minimum can be obtained with very modest computer resources. There is no problem about
setting the initial conditions or the weighting factors,

I Figure 3. Torsion angle ¢ within the BOj; triangle, defined as the angle
between two planes, each of which is defined by three atoms (&, j, k) and (j. k. [)
respectively.

The main weakness of the method is its limited range of applications. The requirement
that all the conditions must be linearized is very restrictive. Therefore, features including
fitting to crystal properties or the use of the shell model cannot be included at the moment.
In such cases it is possible to use the LP fitting procedure as a starting point and to refine
the resulting parameters by using more general fitting programs. It is interesting to note that
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the LP method is based on linearized optimization with constraints, while the other widely
used methods are based on non-linear optimization without constraint. It is likely that, in
the future, the two methods will approach each other more closely.

6. Application of the LP fitting method to B;0; crystals

‘We now apply the new LP fitting method to the derivation of interatomic potentials for ByO4
crystals, Qur study embraces both B,0;-1 and B3 O;-11I structures. Two types of ab initio
calculation are used: first, the periodic boundary conditions Hartree—Fock (HF) methods
[30] and secondly calculations on small molecules. Energy surfaces based on the former
techniques will be described first,

Table 4. Fitted potentials {A1-A5) based on the BzO3-I structure and ab imitio data,

Patential sets
Parameters Al A2 Al A4 A5
Charge
g(B) + 2.7 +2.7 + 2.7 +135 + 1.2
g{O) -18 ~1.8 -18 -1.0 -0.8
Moarse potential for B=0
D (eV) 2.580 1.549 1.344 0.466 0.326
5 (A) 2.3 27 27 2.7 27
ro (A) 1.55 1.59 1.59 1.59 159
Buckingham potential for 0-0
A (V) 2229.0 6317.0 5878.0 795.0 727.0
2 (A) 0.36 Q.35 035 0.35 0.35
C (eV A% 0.0 935.2 662.2 60.9 80.9
Buckingham potential for B-B
A (eV) 0.0 0.0 0.0 0.0 0.0
o (A) 035  0.35 035 033 0.35
C eV A% 314.9 0.0 456.3 9.1 19.4
Three-bad{ term for O-B=0 (8 = 120 for threefold
and By = 109.47 for fourfuid conrdination)
k(eVrad=?) 0.0 0.0 0.0 0.0 0.0
Three-body term for B-O-8 (6 = 120)
k(eVrad~2) 808 479 — 6.63 2.53
Four-body term for O-B—-0-0 “
k (eV) 0.85 — — — —

6.1. Potentials based on periodic HF methods

6.1.1. Fitting to B,0;-1 structure. The experimental structural data of B;Q3-I are used
to obtain the structural stability conditions (thirty-six structural configurations; all lattice
constants and internal coordinates are varied), while the ab initio potential energy data
(eleven structural configurations; see table A1), which are derived from the Hartree~Fock
techniques with periodic boundary conditions employing the CRYSTAL code [30], are used
as components of the cost function. Further details of the latter calculations are given in
the Appendix.

Morse potentials are used for the B—O interactions. Indeed when a Buckingham potential
was used for this interaction no acceptable solution was obtained. As noted, Morse functions
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model covalent bonding and as such they can compensate for some part of the lattice energy
that is lost on reducing the effective charges, so a 90% ionicity model is used instead of
the formal charge in the first three potentials (Al to A3). Buckingham potentials are used
for the O-O and B-B interactions. Potential Al includes pair, three-body plus four-body
terms (discussed below); potential A2 includes pair and three-body terms and potential A3
includes only pair-potential terms. In potential A4 and potential A5 charges are reduced to
50% and 40% ionicity.

Table 5. Static lattice simulation of the structure and properties of BaOs-l1 using fitled potentials
(Al-AS5). The experiment data [24] are given in brackets.

Potential sets for static lattice simuiation

Al A2 A3 Ad AS

(1) Calculated lattice energies in expernumental (E1) und energy-minimized (E2) structures {eV/Ba10O3)
El -182.47 —183.95 —181.11 ~52.99 —34.81
E2 —182.76 —184.81 —18L.70 -53.05 —34.90

(ii} Energy-mininized structure (percentage ervor with respect to experimenial value); wnit-cell volume (v),
lattice constants (a, b, ¢) (%)
v + 1.89 =360 + 2.05 -2.92 =548
a + 1.49 +0.79 + 254 +0.19 + 0.04
h + 149 +0.79 +2.54 +0.19 +0.04
¢ —1.09 -3.09 —2.94 ~3.29 —5.55

Bond length (A)
B1-0O1 [.386 E375 1.372 [.405 1.393 {L.404}
B1-02 1.358 £.384 1.374 1.357 1.37] {1.366}
Bi-03 1.366 [.384 1.373 1.374 1.381 (1.337)
B2-01 1.358 1.385 1.374 1,336 [.371 {1.336)
B2-02 1.386 L.375 1.372 1.404 1.392 {1.400)
B2-03 1.366 [.384 1.373 1.375 1.382 (1.384)

Bond angle {deg)
Ol1-BI1-02 120.3 [18.6 119.1 119.3 118.7 {119.0)
Ol-B1-03 1177 [21.4 120.7 1154 117.6 (114.7)
02-B1-03 122.0 119.9 120.2 125.2 123.6 (126.1)
0l1-B2-02 120.3 [18.5 119.1 119.3 118.7 (121.5)
BI-C1-B2 134.7 134.6 140.1 1304 131.1 (130.5%
Bi-02-B2 134.7 134.6 140.1 1304 131.2 {128.3)

) i =, < § A &

(E:;L)Tir( ﬁfmﬁ; _ﬁ.& %3rgy niirninized structures
E(1, 1} 4739 642.7 488.5 176.5 116.7
E, ) 1228 £57.9 96.4 523 324

Bullk modulus (GPu)

239.8 319.5 227.1 93.7 60.3

Static dielectric constans {experiment: 3.0-3.5"
epll. ) .64 2.08 217 1.80 1.84
(2, 2) i.64 2,08 2.17 1.80 1.84
en(3, 3) 1.68 4.05 2717 2.41 2.57
* From [27].

The four-body term, included in potential A3 is a torsional term applied around the
0-B-0-0 bond angle in the BO; triangle and is often taken to be of the form:

V = K41 — cos(2¢)) 21

where K4 is a force constant and ¢ is the torsion angfe. This term is added to retain planarity
of the BO; triangle, as shown in figure 3.
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The fitied potential parameters are shown in table 4 and the resulting static lattice
simulations for both B;03-I and B42O3-II are given in tables 5 and 6 respectively.

Table 6. Static lattice simulation of the structure and properties of B2z0Os-11 using fitted potentials
(Al~-AS5). Experiment data [25] in bracket.

Potential sets

Al AZ Al A4 A5

(i) Calculared luttice encergies in experimental (E1} and energy-minimized (E2} structures (eV/B103)
El —183.74 - 183.89 ~179.54 —54.08 —35.70
E2 -184.12 —-184.20 —180.08 —54.29 =35.77

(ii) Energy-minimized structure (percentage error with respect to experimental value); unit-cell volume (v),
lattice constants (a, b, ¢} (%)
v +0.52 +4.12 +5.15 +3.83 +0.56
a +0.24 +0.94 +2.11 +0.48 -0.38

+ 0.24 + 0.94 +2.11 + 0.48 —{(0.38

c -0.33 4+ 2.03 + 112 +1.82 + .96

Bond length (A)
B1-0] 1.429 1.398 1.445 1.393 1.406 11.373)
B1-02 1,450 1.492 1.509 1.439 1462 {1.506)
B1-02 [.471 1.54( 1.510 1.47Q 1.497 {1.508)
B1-QO2" [.532 1.555 1.521 1.672 1.553 {1.512)

Bond angle (deg)}
01-B1-02 107.1 110.3 111.0 104.1 106.8 (110.2)
0O-B1-02' 113.6 1144 110.8 117.0 115.2 {[15.8)
O1-B1-02" 111.3 111.7 111.8 1125 i11.8 {I13.1)
02-B1-02 109.3 114.6 108.1 109.3 110.4 {[07.4)
B1-Ol-Bi 138.6 138.7 142.0 1315 1347 {138.6}
B1-02-Bl 119.3 118.5 nr7 119.3 118.7 {118.7)

{ifi} Properiies for energy-minimized structures
Elastic constant (GPa)

E(l D 1429.6 1339.7 1179.3 257.0 263.7
E(1,D 167.2 2172 89.9 —26.9 45,3
Bulk modulus (GPa)
588.0 5914 453.0 67.8 1187
Static dielectric constant {experiment: 3.0-3.5)*
gpll, 1) 2,33 2.24 3.09 2.02 2.19
(2, ) 245 3.45 4.58 1.83 3.35
(3, 3) 243 3.16 5.78 1.82 2.40
¢ From [27).

The first clear result of the fitting exercise is that on comparing potentials Al, A2 and
A3, we find that the pair-potential model (A3) is very poor in describing the B—O-B bond
angles and the cell volume (and hence density), as discussed in section 4. It is interesting
to note that the fitted O-B—O force constant is zero both for potential Al and A2. This may
mean that the effects of the O—-B—Q interactions can be mimicked by the O-O interactions,
while the B—O-B interactions cannot easily be replaced with the B-B interactions. It is also
of considerable interest that the potentials which are fitted only using the data of B40s-1
can reproduce the structure of B2O5-11 well.

Turning now to the question of the atomic charges, the experimeatal structure is
relatively insensitive to their value if we allow the short-range potentials to be refitted;
in contrast the elastic constants and the bulk modulus are strongly dependent upon the
values assigned to these charges. Generally speaking, the more ionic models have the
larger bulk moduli. When the bulk modulus (30-50 GPa for B-03-I and 100-130 GPa for
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B40s3-II) calculated in the companion ab initio study of B20O4 {2, 3] are taken into account,
an effective charge of 40% or less of the formal value may be appropriate. Ionicities of this
magnitude also agree with the Mulliken charge (¢ 8 ~+1.2) calculated by Takada {2].

We also note that for the rigid 1on model, the calculated static dielectric constants are
smaller than the experimental values (3.0-3.5) [27] as expected. Use of the shell model
may overcome such problems.

Tabic 7. Fitted potentials (B1, C1, C2} based on both crystal structures and ab initie data,

Potential sets

Parameters B1 Cl 2
Charge

4(B) +12  +i2 105

g(0) -0.8 -08 ~0.6

Marse potential for B-0
Sfor wofold oxygen atom G2

D (V) 2322 1.84 179

g (AN 2.5 27 2.7

e (A) 1.35 1.35 135
Sor threefold oxygen atom O3

D {&V) 2322 098 0.96

gA™h 25 27 27

20 (A) 1.35 1475 1.475

Buckingham potential for 0-0
A (eV) for 002 22315 1990.8 485.8

A (eV) for 02-03 22313 1650.9 4229
A (eV) for O3-05 22315 692.3 193.4

p (A) 0.30 0.30 0.35

C eV Af) 0.0 0.0 0.0
Buckingham potential for B-B

A (&V) 0 323.1 0.0

(&) 0.30 030 035

C eV A% 0.0 0.0 0.0

Three-budy term for O-B-0 (6y = 120° for
threefold; By = 109.47° for fourfold)
Jor rhmeﬁ:ld boron atom

k {eV rad-?) 2.0 6 3.24
Jor fomj‘old boron atom
k (eV rad™?%) 2.0 1.66 1.94

Three-body term for B—O-B (6y = 120°)
Jor twofold vxygen atom

k (eV rad™%) 5.58 6.38 4.60
far rhreeﬁ:!d oxygen atom

k(eV rad™?) 5.58 422 4.53
ﬁ:ur-body term for 0-B—0-0

k eV rad™) .02 —_ —

6.1.2. Fitting to both BoOs-I and BaO4-II structures. Next, in order to reproduce better
the structures of both B;0O3-1 and B20s-TI, simultaneous fitting is performed. For Bo0s-,
twelve structural configurations (lattice constants are varied) and eleven ab initio data (see
table Al) are used for the structural stability conditions and as components of the cost
function respectively; while for B2Os-1II, we use twelve structural configurations and eleven
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ab initio data. The fitted potential (potential B1) and the resulting static lattice simulations
are shown in tables 7-9.

Table 8. Static [attice simulation of the structure and properties of B2Os-1 using fitted potentials
(B1, C1, C2). Experimental data [24]) are given in brackets.

Potential sets
B1 Ci c2
(i) Calculated lattice energies in experimental (E1) and energy-minimized (E2) structures (eViB203)
E1l —44.74 ~42.05 -21.16
E2 —44.83 —42.11 —27.24

(i) Energy-minimized structure (percentage error with respect to experimensal value); unit-cell volume (v},
lattice constants (a, b, ¢) (%)

U +0.30 + 1.87 +1.32
a + 0.89 + 0.87 +0.83
b -+ 0.89 + 0.87 +0.83
c —1.47 +0.12 —-0.34
Bond length (4
B1-01 1.396 1.409 1.398 {1.404)
B1-02 1.358 1.346 1.367 {1.366)
B1-03 1,365 1.362 1.364 {1.337)
B2.01 1.358 1.346 1.367 {1.336}
B2-02 1,396 1.409 1.398 {1.400%
B2-03 1.365 1.362 1.364 {1.384}
Bond angle (deg)
01-B1-02 120.3 120.1 120.4 ({119.0%
01-B1-03 116.6 1153 116.1 (114.7}
02-B1-03 122.7 124.0 121.7 (125.1}
01-B2-02 i20.3 120.1 120.4 {121.5)
B1-01-B2 131.9 1314 130.7 {130.5}
B1-02-B2 131.9 1314 130.7 {128.3}

iii) Properties for energy-minimized siructures
lastic constant {GPa)

E(1, I} 2234 191.6 1386
E(1,2) 589 524 385
Bulk modulus {GPa)
113.3 98.8 71.9
Static dielectric constant (experiment: 3.0-3.5)2
go(l, 1) 1.44 1.60 1.40
£o(2, 2) 1.44 1.60 1.40
£o(3, 3) 2.13 238 2.59
* From [27].

We find that potential Bl can reproduce both crystal structures very well. The
simultaneous fitting reproduces both structures egually well. However, two problems still
remain. The first is that the difference in the B—O bond lengths in the BOs-II structure is
not well reproduced. As discussed by Takada [2], the coordination numbers around O! and
02 are two and three which is thought to be the main reason for differences in the B-O
bond lengths. The second problem is that the lattice energy of B;Os-II is sometimes lower
or almost the same as that of B;03-1. This tendency becomes stronger as the ionic charges
are reduced and is ¢learly a substantial problem.

In order to overcome these difficulties, we have further developed our approach. We
recall from the companion ab initio study [2] of B3O that the B-O bond strength changes
according to its coordination number. Moreover, in the case of B;0s, the coordination
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Table 9. Scatic lactice simulation of the structure and properties of B2Os3-11 using fitted potentials
(Bl, Ci, C2). Experimental data [25] are given in brackets.

Potential sets

Bl Cl c2
(i) Calculated lattice energiex in experimental (E1} and energy-minimized (E2) structures (eV/BaOa)
—44.50 —40.70 2577
E2 —44.73 —40.84 —25.84

_{ii} Energy-minimized structure (percentage error with respect to experimental value); unit-cell volume {v),
lattice constants fu, b, ¢) (%)

v +1.52 =253 -~1.96
a +0.09 -0.27 —-0.79
b + 0.0% —0.27 —0.79
¢ +0.75 —0.49 +0.42
Bond length (A)
B1-01 1419 1.346 1.367 (1.373)
B1-02 1.449 1.476 1.489 {1.506)
B1-02 1.469 1.502 1.501 {1.508)
B1-02" 1.597 1.564 1.543 {1.512)
Bond angle (deg}
O1-B1-02 105.8 1106 109.5 {110.2}
0l1-B1-02 [13.5 1179 116.1 {115.8}
01-B 102" [12.3 1152 114.3 (113.1}
02-81-0% £09.3 107.5 108.3 (107.4}
B1-0O1-Bl 133.5 134.1 1332 {138.6)
B1-02-Bl 118.8 1200 119.7 (118.7}

(tis} Praperties for energy-mimimized structures
Elastic constant {GPa)

E(l, I 5314 5114 403.2
E(l1,2) =30 832 65.7
Bulk modulus (GPua)
175.1 248.0 178.2
Static dielectric constant {experiment: 3.0-3.5)*
ep(l, 1) 1.67 [.59 1.32
en(2, 2) 1.56 1.65 1.34
(3, 3 1.57 1.68 1.40
* From [27].

number around the oxygen atoms seems to be especially important. Therefore, different
Morse and Buckingham potentials are assigned for twofold- and threefold-coordinated
oxygen. Next, in order to keep the energy of B;05-1 lower than that of B20s-IJ, one
inequality condition:

Ep0,-1 < Epy0,~11 (22)

is added during the fitting.

The fitted potentials (C1 and C2) and the resulting static lattice simulations are again
given in tables 7-9. Potential Cl is fitted with charges cotresponding to 40% ionicity, while
that for C2 was 30%. Both potentials reproduce not only the lattice parameters but also
the bond lengths and bond angles in the two crystals, while keeping the energy of B»0s-I
lower than that of B,O5-IL

6.1.3. LP fitting potentials based on periodic HF energy surfaces: summary. We have
succeeded in deriving several sets of potentials which can reproduce both crystal structures
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of ByOs. In particular, we find that a partial charge model with a B-O Morse potential and a
B-0O-B bond-bending, three-body term can reproduce both crystal structures accurately. The
comparison of the lattice energies of the two structures suggests that different short-range
potentials must be defined to reproduce the order of their energies, and the potential sets (C1
and C2) in which parameters depend on the coordination number around the oxygen atoms
have consequently been developed. These potentials can reproduce not only the structures
but also the order of the lattice energies of the two phases. They will be applied to MD
simulations of vitreous B2O3 in subsequent papers.

6.2. Potentials derived from molecular clusters and crystals

6.2.1. Potentials derived only from melecular clusters. Can potential energy surfaces based
on molecular systems enjoy similar success to those based on periodic structures?

For the 5i0; sysiem, several sets of interatomic potentials derived from ab initio
calculations on related molecular clusters have been applied to crystalline and vitregus
states. In the B3Os system, Gupta and Tossell [31, 32], Gibbs et al [33] and Zhang et al
[34] showed that molecular clusters mimic the geometry of polyanions in borate minerals.
A detailed study of molecular energy surfaces is therefore reported in this section.

H
4 /
I (\a /o\a /"~--..H
e o” N / \
\ %
H H H
H3BO3 H4B205

H

(
@
A N7 \

H

H3B306
Figure 4. Molecular clusters used for deriving potentials,

To this end we have therefore calculated several potential energy surfaces for molecular
clusters, by performing ab initio calculations on the monomer HBQj, the dimer HyB,Os and
the trimer H3B30¢ using a 6-31G* basis set with the GAUSSIAN-90 program [35]). The
schematic diagrams of the three structures are shown in figure 4. For HBO;, we optimized
with C| symmetry; after optimization, the B—-O bond lengths {whose optimized value is
1374 A) are varied from 1.0 A to 2.0 A and the O-B-O bond angles are varied from
105° to 135°. For H4B,0s, the structure is optimized with Cy symmetry; following the
optimization, the B—O-B bond angie (the optimized value of which is 134.5%) is varied
from 1207 to 150°. The structure of H3B; 0y is optimized subject to Cyy, symmetry and the
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0-B-0 and the B-O-B angles remain fixed at 120°. The optimized B-O bond length is
1,384 A for in-ring bonds and 1.358 A for out-of-ring bonds.

There are several assumptions made in deriving the resulting potentials. In order to keep
charge neutrality, the charge of the hydrogen atom (gy) is varied, with the charges of boron
atom (gz) and oxygen (go) being changed in order to satisfy the following conditions:

gp = 3gy qo = —2q4.

For the hydrogen atoms we only allow the point charge (gy) to vary. The interactions
between the oxygen and hydrogen atoms in the OH group are assumed to be unchanged,
because the O-H bond lengths remain fixed in the ab initio calculations.

We employ a general least-square fitting procedure of interatomic potential parameters
to the ab initio energy surfaces, varying the charge qy. We used partial charge models
with Buckingham potentials for the B-O and O-O interactions and bond-bending, three-
body terms for the O-B-O and B—O-B interactions. A total of eight parameters (A, p,
and C parameters for the B—O and O-0 interactions; bond-bending force constants for the
0-B-0O and B-O-B interactions), but not the charges were fitted. In order to check the
influences of the range of ab initio data employed in the fitting procedures, two potentials
are fitted. Potentials D1 and D2 are fitted using respectively the ‘long-range’ B~O data,
ie. (1.0A < R(B-O) < 2.0 A) and the ‘short-range’ B-O data, ie. (1.15A < R(B-
O} < 1.55 A). The ‘short-range’ B—O data are of course present in the ‘long-range’ B-O
data. The fitted potentials are given in table 10.

Table 10. Fitted potentials (D1, D2) obtained using ab iritio data on molecular clusters.

Parameter Potential DI Potential D2

Charpe
4(B) +1.11 =+ 111
(0} —-0.74 —-0.74
Buckinghum potential for B-O
A {eV) 1843.0 5924
e (A) 0.169 0.192
C (eV A%) 0 0
Buckingham potential for O-0
A {eV) 1919.8 8207.0
e (&) 0.284 0.235
C (eV A% 0 0
Three-bady terms for O-B-0 (8 = 120°}
uand B-0-8 (8 = 1207)
kO-B-0y  0.0004 1.675
k{B-0-B) 1.625 1.251

When used in modelling the B,Os-I erystal, both potentials D1 or D2 result in an
expansion of the cell volume by 35% or 17%. Several other attempts were made to fit the
data (for example, using a2 Morse potential or with different charges), but none of them could
reproduce the B;Os structure well. It appears that the effects of the crystalline environments
are not simply expressed by the addition of the electrostatic Madelung potential; and the
results may suggest moreover that the short-range terms must be varied in line with the
change of charge distribution due to the crystalline environments. A more detailed discussion
is given in the following section.
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Table 11. Input data and conditions used for LP fitting. For the monomer, dimer and trirer,
R{g_o) and 9(0-3_0), 9{3-05,,_3], R(B—Ob,} and R(E—O,,,z,,) varied; for crysta]s. 4, b, c, o, ﬁ, ¥
varied. R,# and a4, b, ¢, o, 8. y represent bond lengths, angles and lattice constants. Oy, and
Oppr represent non-bridging and bridging oxygen atoms. (Mote that the energies are calculated
using the standard Hartree-Fock procedures described in the text and are available from the
authors on request.)

Compconent of cost function Structural stability condition
Derived from ab initio data Derived from structural data
Monomer HBO3 (10 structural configurations (2 structural configurations
used for fitting) used for fitting)
E = E(Rp-0). 6lo-8-07) E(1.374, 120), E{1.3. 120). E(1.384,120) > E(1.374, 120}
E(1.35, 120}, E(1.40, 120), E(1.364, 120} > E(1.374, 120)
Energy-minimized value E(1.45, 120), E(1.50, 120),
Rip_py=1374 E(1.374, 110}, E(1.374, 115),
8o-8-0) = 120, E(1.374, 125), E(1.374, 130)
Dimer HyB,0; (7 structural configurations (2 structural configurations
used for fitting) used for fitting)
E = E{fp_0,_5)) E(134.5), E{120), E(139.5) > E(134.5)
Energy-minimized value E(125), E(130), E(129.3) > E(134.5)
Ria-0,,) = 1.365 E(140), E(145),
Rig-oy,y = 1.3557 E(150)
Bo-p-0y = 134.5
Trimer HaB304 (no data used) {4 structural configurations
used for fitting)
E = E(R(B-0y): R(B~0uy1) E(1.374, 1.358) > £(1.384, 1.358)
Energy-minimized value E(1.364, 1.358) > E(1.384, 1.358)
Rp-o,) = 1384 E(1.384, 1.368) > E(1.384, 1.358)
R(B-—0n,) = 1358 E(1.384, 1.348) > E(1.384, 1.358)
B2O03-I crystal (9 siructural configurations (12 structural configurations
used for fitting) used for fitting)
E=E(ab,ca By E{exp), Efa: +1%or — 1%} > E(exp)
E{a, b, c: +4%), E{a, b, ¢ : +2%), E(b: +1%or — 1%) > Efexp)
E(a, b, c: —4%), E{a, b, c: =2%), Efc: +1%or — 1%) > E{exp)
Elc 1 +3%), E(c: —2%), E(a: +2.5%r — 2.5)° > E(exp)
Exp = experimentally Ela:42%), E(z: —-1%) E(B: +25%r—2.5)° > Efexp)
observed structure E(y 1 +2.5%r — 2.5)° > E(exp)
B;0O3-II crystal (no data used) (12 structural configurations
used for fitting)
E=FE(ab. ¢ e B.v) El(a: +1%or— 1%) > E(exp)
E(b: +1%or — 1%) > E{exp)
E{c : +1%or — 1%) > E(exp}
Efe : +2.5%r — 2.5)° > E(exp)
Exp = experimentally E(B: +2.5%r = 2.5)° > E{exp)
observed structure E(y: +2.5%r— 2.5)° > E{exp)

6.2.2. Potentials derived from both crystals and melecular clusters.  In the previous section,
the simple application of the potentials derived from the ab initio data on the molecular
clusters failed to reproduce the B;O;-I structure. Is there any common potential transferable
for both crystal structures and molecular clusters?

To investigate this problem, several simultaneous LP fiiting calculations were performed
using both the crystal structural and the molecular cluster data. GAUSSIAN-derived and
CRYSTAL-derived ab initic data were used for molecular clusters and crystals respectively.



Computer modelling of ByO3: part 1 8679

Table 12. Summary of conditions used in LP fitting for potentials El to E7. @ indicates data
used during LP fitting.

Fitted potentiat sets

Parameters El E2 E3 E{ ES E6 E7
Charge

q{B) +12 +1.2 412 406 +06 +06 +06
)] -0.8 —08 -08 —04 —04 -04 —04
Monuvmer

ab initio data @ @ @ @ @

stability condition @ @ @

Diper

ak inilie data @ @ @ @ @

stability condition @ @ @

Trimer

Stabulity condition @ @ @

By O3-1 crystul

ab initio data @ @ @

Stability condition @ @ @ @ @

By Ox-I1 crystal

Stability condition @ @ @ e

Table 13. LP fitted potentials obtained using molecular data and crystal data (E1-E7),

Fitted potential sets

Parameter El E2 E3 E4 ES ES E7
Charge

g(B} +12 +12 +12 + 0.6 + 0.6 +06 + 0.6

100} -8 —-0.8 —0.8 —-0.4 —0.4 —-04 -4
Morse potential for B-G

D (EV) 248 2.53 4.05 2.65 3.90 428 4.09

B@ah 2.7 2.7 2.7 29 27 2.7 2.8

20 (13‘) 1.35 1.35 1.30 [.28 1.28 1.28 1.28
Buckingham potential for O-Q

A (EV) 2250 2288 1679 1632 2245 2371 2447

2 (A) 0.30 0.30 0.30 .30 0.30 0.30 0.30

C &V A% 0 0 0 o 0.1 37.1 420
Buckingham potential for B-B

A (V) 1] 1] 440.8 0 0 1348 1290

e (A 0.30 0.30 030 030 .30 Q.30 0.30

cevih o 0 2 0 0 0 0
Three-budy term for O-B-0 (k3, 8y = 120° for threefold; ks, 6y = 109.47° for fourfold)

ks(eVrad™?® 0 [0 0.93 1.09 [} 0.08 0.01

ks @V rad=*)  5.00 1.78 - 7.47 17279 — 1.04
Three-body term for B—0-B (6 = 120°)

k (eV rad=2) 1.37 447 .50 0.14 0.02 0.28 1.04

LP fitting is very suitable for this sort of study, because the conditions for molecular clusters
and crystals are dealt with independently and equally. The input data and conditions used
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for the LP fitting are shown in tables 11 and 12. A total of seven fitting calculations were
performed which differ in the data that were used; the fitted potentials and the resulting
static lattice simulations are shown in tables 13 and 14.

Table 14, Static lattice simulation using the fitted potentials (E1-ET). # indicates a calculated
value which deviates considerably from experiment. * indicates an averaged bond angle.
indicates a result where one angle is much larger and the other is much smaller than that of

experiment.
Potential sets for static {attice simulation
({Experimental
Parameter El E2 E3 E4 E5 E6 E7 data)
Monomer bond length R (A)
R(B~-O) £.374 1.464# 1.374 1.384 1.394 [.374 1.374 {1.374)
Dimer bond lengeth R (4) and bond angle @ (deg)
Riz_0,) 1.455% 1.455# 1.365 1,395 1.385 1.365 1.365  {1.365)
ta-0,-5 L1315 127.5 1325 1325 {445% 1325 1333 {134.5)
Trimer bond lengths Rig-o,,) and Rig-o0,,,)
Reg_opn 14594 1.455% 1.374 1.334 1.334 [.394 1.394 {[.384)
Rig-=o,,) 1458# 1.458# 1.368 1.338 1.398 f.368 1.368 {£.358)
B»03-1 crystal lattice energy (eV/B203), relutive cell volume te experimental value (%), bond angle Op.0-p
Energy —46.21 —46.11 —5769 2038 2660 2976 28739
Cell volume -+ 9.8# +09 —258% +11.0# ~5.29 —446  +093
B g—0-B) 140. 14 1324 1267 13854 & 136.5#  138.5#  (130.0%)
B203-11 crystal lattice energy (eV/B203), relative cell volume to experimental value (%)
Energy —46.31 —46.16 -5987 -20.14 -2648 3044 2864
Cell volume + 2.1 +04 —15.1# —1.55  +050 ~2.33 -1.27

Several features of the calculated results deserve attention. First we note that before
investigating the models based on 40% and 20% ionicity (potentials E1-E7), several other
values for the ionic charges were tested. In general, the models with higher ionicity (>30%)
are good at reproducing the crystal structures, while the lower ionicity models (<20%)
reproduce the molecular structures well. 40% lonicity (gg = -+1.2, go = —0.8) is close to
the Mulliken charge (gz = +1.1) in B20;-1 calculated by the CRYSTAL codes (STO3-21G
basis set), and 20% ionicity {gz = +0.6, go = —0.4) is close to that (g5 = +0.65) in
HBQ; calculated by the GAUSSIAN-90 code (MP2/6-311G**). The aim of the present
fitting procedure is to explore the possibility of a common potential for both crystals and
molecules; so a common charge value is used in the LP fitting, although the crystal is clearly
more tonic than the molecules.

We found, not surprisingly in view of the above comments, that when all the conditions
are used at the same time in the LP fitting, no feasible solution existed. Therefore, several
combinations of conditions are used in the LP fitting.

Potentials E3 and E6 refer to the case where only molecular ab initio data (obtained
from the GAUSSIAN calculations) and the stability conditions of the molecules are used
without any data relating to the crystals. It is interesting to note that the D parameter
in the B-O Morse potential is larger than those of the other cases, which leads to the
smaller cell volume in B,O3-1. We also find that the experimental B~O bond lengths in the
crystalline states are almost the same as those calculated from the ab initio simulations for
the molecules (see tables 11 and 15). Thus in the molecules, although there are no crystal
effects (due to long-range electrostatic forces). the bond lengths are close to those in the
crystalline state, but the B=O covalent bonding as represented by the Morse term becomes
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Table 15. B-0 bond distances in borate minerals.

B-C (A) B-0 (&)
Compound Trnangular BO; Tetrahedral BOy Reference
Boron trioxide
B20s;-1 1.337, 1.366, 1.404 24]
1.336, [.384, [.401
B20;-11 1.373, 1.506, 1.507, 1512 [25]
Orthoboric acid
B(OH}s 1.356, 1.365, 1.365 [36. 37

1.353, 1.359, 1.365

Metaboric acid
HBO,-1 [38]
1.345, 1.371, 1.386
1.356, 1.366, 1.378
1.433, 1.451, 1452, 1.553
HBO,-IT [391
1,436, 1,465, 1.432, 1.505
HBQ,-I11 (40, 41}
1.373, 1.377,
1.391, 1.353,
1.372, 1.372 (in-ring)
1,351, 1 367, 1.347 (out-cf-ring)

stronger than in the crystals.

Potentials E1 and E4 refer to the case where the ab initio data on the molecules
(GAUSSIAN-derived data) are used as components of the cost function, while the stability
conditions of the crystals are imposed. The fitted results give a smaller D value in the B-O
Morse potential and a larger force constant (K} of the B-O-B interactions, compared with
those of potentials E3 and E6. The smaller D value suggests that in the crystalline states
the effects of the crystal field replace a component of the B-Q attractive terms described in
terms of covalence in the molecular species. A possible reason for the large X value may
be that in the crystal the larger effective charges result in an increased repulsion between the
B atoms, which is not modelled directly owing to the use of a common set of charges for
the molecules and crystals; this error in the Coulomb term is compensated by the increase
in the bond-bending interaction.

Potentials E2 and E5 show the case where only ab initio data (CRYSTAL-derived data)
and the structural stability conditions of the crystaks are used, The use of too many conditions
for LP fitting occasionally gave no feasible solution, Therefore, the number of conditions
used for LP fitting was reduced, compared with that in our earlier potentials (BI, CI and
C2). As for potential E2, both crystal structures are reproduced very well, in contrast to the
potential based on molecular calculations which result in long B—=O bond Iengths, Unlike
the case of potentials E3 and E6, the D parameter in the B-O Morse potential has a small
value corresponding to the crystalline state. We note that poteatial E5 fails to reproduce
the structure of B2O;3-I; the relaxed structure, using this potential, has fourfold coordination
around the boren atoms. In general, the smaller the value of the charge used. the more
difficult becomes the simultaneous fitting of B20z-1 and B303-1I and low-charge models
cannot reproduce both structures with a single set of parameters. A likely explanation of
the latter feature is that low-charge models cannot compensate the difference between the
Madelung energies of the two polymorphs.
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Potential E7 was derived using both molecular and crystal ab initio data (1.e, from both
GAUSSIAN and CRYSTAL calculations) for B;O3-1. There is no feasible solution for 40%
or higher charge models, or in the case where the data for ByO3-1 is added. However, this
potential reproduces the B—O bond lengths for the three molecules and the cell volumes in
both crystals reasonably with the same set of parameters, although the B-O-B bond angle
in B1Q0s-1 shows appreciable error. It suggests that it is difficult to reproduce both molecular
and crystalline structures precisely with a common potential, but that the 20% charge maodel
can reproduce them both to some extent.

There are two problems remaining in applying these potentials to MD simulations. One
is the large C value in the O-O interactions fitted in the 20% ionicity model. It generates
too iarge an atiractive force when the OO distance becomes short. The other is the energy
difference between Bp04-1 and B;05-I1. In the case of potentials E1, E2, E3, E6 and E7,
the energy of B20O3-1I is lower than that of ByO3-1. During the LP fitting, one inequality
condition Eg,0,-; < Ep,0,-1; can be added. but it is very difficult to find an acceptable
solution for the smaller charge models (20% or less) which still reproduces both structures.
We proceed to MD simulations using these and better potentials in our subsequent study.

It appears therefore to be difficult to find transferable potential models that reproduce the
two crystal structures and the three molecular structures with a common set of parameters.
Even the best model often fails to reproduce the order of the lattice energies. When compared
with the ‘molecular’ potentials, the ‘crystalline’ potentials result in higher charge models,
with the B-O attractive terms being weaker and the force constant of the B—O-B interactions
being larger.

Finally, it is interesting to note that although the bond lengths and bond angles are very
similfar for the molecular and the crystalline states, the potentials parameters are different
reflecting the differing degrees of lonicity in molecules and crystals.

6.3, Potentials for BaOy: summary

We have found that it is essential to employ a partial charge model with a B—O Morse
potential and a B-O-B bond-bending, three-body term in order to reproduce both crystal
structures accurately. Moreover, to reproduce the order of energies in different phases, new
potentials (C1 and C2), which depend on the coordination number around the oxygen atoms
have been developed.

When we compare the ‘molecular’ potentials (e.g. E3 or E6) with the ‘crystalline’
potentials {e.g. A, B, C, E2 or ES), we have found that it is possible to fit molecular or
crystal data separately, but that the potentials are not transferable. When we attempt to
derive common potentials (E1, E4 or E7), by fitting both to molecular and crystalline data
simultaneously, these do not reproduce both the crystal structures and the three molecular
structures. These results must cast considerable doubt on the use of calculations on small
molecules in modelling the properties of ionic or semi-ionic solids,

We will now use the more successful of our potentials to investigate the stability of
various polymorphic structures of B;O;.

7. ‘Computer synthesis’ of new possible polymorphs and possible structural units of
vitreous B, 0,

We now investigate whether it is possible to construct polymorphs based on a variety
of boroxel ring structures, our motivation being the importance of the boroxol ring in
amorphous B2Q3, a point to which we return in the next paper. We will report several
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computer experiments which were performed in order to explore new structures for B,Os.
The starting point was to identify those structures among the borate crystals that have boroxol
ring content. 'We have discussed elsewhere [2] that the structure of B»Os considerably
differs from the borate structures which have a high content of modifier oxides; and as the
content of modifier oxides increases, a three-dimensional type of infinite network changes
into an assembly of isolated structural units with non-bridging oxygen atoms, Therefore,
it is desirable to start from the borate structure with the least content of modifier oxides.
Caesium enneaborate {42] Cs,0 - 9B3 05 is a good first candidate. This structure has two
three-dimensional interlocking, twin networks based on B-O bonds (see figure 5). The
topology is such that it is not possible to pass from one network to the other. The network
comprises two kinds of basic unit (with a ratio 1:2): a triborate group (containing a six-
membered ring, but with one of the boron atoms coordinated tetrahedrally with oxygen
atoms) and a boroxol group. As noted above, the vitreous structure of B,Oj is ciaimed
to have a high fraction of boroxol rings, and a structure such as that of metaboric acid
HBO,-II [41], which comprises only boroxol rings, with only a small influence due to
H,O, is another good starting structure. Its structure is hydrogen bonded with sheets of
trimeric HBO, molecules (six-membered rings) loosely stacked to form a mica-like plate
crystal in the orthorhombic system [41] as shown in figure 6.

Figure 5. Crystal structures of Cs20 - 9B203 [42], Figure 6. Crystal structure of HBO,-IIT [41],

7.1. Construction of new pelymorphs from HBOy-IIf

It is necessary first to ‘dehydrate’ HBO,-TI (computationally), for which there are several
possible routes. The simplest involves rearrangement of some of the hydrogen bonding
between the layers. Two of the three hydroxyl groups, —O(3)H(3) and —O{6)}H(6), are
almost directly above and below the BO3 groups of the boron atoms B(1) and B(2), while
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the remaining ~O(1)H(1) group interacts to a lesser degree with its centre-related counterpart
[43] (see figure 6). Therefore firstly, all the O(1) atoms are removed with all the H(I)
hydrogen atoms. Nexl, we extract half of the O(3) and O(6) atoms, and all the H(3) and
H(6} atoms. The O(3) or O(6) atoms must be removed aliernately in the vertical direction
so that the bonding of B(1)~0(6) or B(2)-0(3) can be generated,

After the removal of the hydrogen and oxygen atoms, the remaining O(3) and O(6)
atoms are moved to the mid-point between the two neighbouring boron atoms to which we
may expect them to bond. Next, static lattice simulations are performed using potential C2,
which was shown to be the best potential set for crystalline Bo,O4 in our preceding section.
To drive the formation of the new B—O bonds, the B~O Morse D parameter is set initially
to be five times its normal value and is restored to the original value after the new bonds
are established in the structure.

The resulting completely relaxed structure (B;O3-a) has the following features: its unit
cell includes six molecules: its lattice parameters are a = 13.63 A, b = 5.73 A c=7794,
o = 86.0° B = 98.7°, y = 99.8% and its density is 1.17 g cm™. It comprises 100%
boroxol rings with no independent BO; triangles. It is interesting to note three further
points. The first is that there is a strong resemblance to the vitreous structure in so far
as the average B-O bond length is 1.36 A and the average B-O-B bond angle of the
boroxol rings is 128°. Secondly, however, we find that the density of the new structure
is much lower than that of the glass (1.84 g cm™?), in line with previous claims that the
100% boroxol model cannot reproduce the glass density [43, 44]. The third point is that
although the original structure is layered, the final structure turns out to be close to the
two three-dimensional interlocking type of networks, found in the crystal structure of Cs20
9B10s.

In order to get a higher density as measured experimentally, we made a final change
to this structure: half of the B3Og units are replaced with a BO3 unit. After this change,
static lattice simulations were performed using the potential C2 in the same manner as for
B203~a.

The resuiting completely relaxed structure of (B3O3-b) is as follows: its unit cell includes
four molecules; its lattice parameters are a = 10.22 Ab=571A c=613A o =782
B = 87.3°, y = 94.6" and its density is 1.33 gem™. It comprises 100% boroxol rings with
no independent BO; triangles. All the B-O bond lengths and bond angles are almost same
as B, 0s-a, while the density increases by 14% compared with that for B;O3-a. The results
show that the final density is strongly affected by the intermediate-range structure Moreover,
it still appears difficult to construct a crystal structure that comprises 100% boroxol rings
and has the experimental glass density.

7.2. Construction of new polymorphs from Cs0 - 98,03

The first problem here is again how to extract the Cs,O from the original crystal structure;
and we must check whether reasonable new B~O bonded structures can be generated, after
the oxygen atoms have been extracted. One of the obvious routes is to extract half of the
O(3) atoms so that the O{3)-0(5") bonding is disconnected and new B(2)-O(3) bonding
is generated so that the network is reconnected (see figure 5). After these manipulations,
static lattice simulations are performed using potential C2 in the same way as with B2O3-a.

The completely relaxed structure (B;0z-c) is as follows: its unit cell includes eighteen
molecules; its lattice parameters are a = 7,99 A, b=1005 A, c = 1620 f\, a = 94.4°,
B =90.0° ¥ = 90.0°; and its density is 1.60 g cm™, which is only 15% smaller than that
of B20; glass. The ratio of B3Oy units to BO; units is 2 @ 3, i.e. 2/3 of the boron atoms are
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in boroxol rings. The basic structure comprises interlocking three-dimensional networks as
in the structure of Cs»O - 9B,03, but one BO; unit connects two neighbouring networks. In
the same network, three BO; units are connected in series. One BO; is connected with two
B10s units, while the other two units are connected with one B3Og unit, as shown in figure
7. The average B—O bond length is 1.36 A and the average B-O-B bond angie outside the
boroxol rings is 128°,

® Boron

® Boon
QO Oxygea

O Oxygen

Figure 7. Connection of B3Oy units with BO; units  Figure 8. Connection of B3Oy units with BO3 units
used in generating By Oy-c used in generating BaOj3-d.

In order to get a density as high as the experimental vitreous density, a final change
was made to this structure: two BO; units, (B(2), O(3), O4), O(8’')) and (B{(2"), O(8),
O(4°), O(5")) were replaced with one BO;y unit simply by topological manipulations, after
which static lattice simulations were performed using potential C2 in the same manner as
the case of Bs03-a. The completely relaxed structure {(B2Os-d) is as follows: its unit cell
includes sixteen molecules; its lattice parameters are = 7.94 A, b = 8.58 &, ¢ = 16.55 A,
o« = 96.1°, 8 = 85.0°, ¥ = 88.0°; and its density is 1.72 g cm™>, which is only 6.9%
smaller than that of B,0O; glass.

The ratio of BzOg units to BO5 units is 1: 1, i.e. 75% of the boron atoms are in boroxol
rings. The basic structure comprises two interfocking three-dimensional networks without
any connection between them, which is the same as in CspO - 9B203;. Two BO; units are
connected in series and each BOs unit is connected with two B3O¢ units. The manner of
connection of the BOs units is shown in figure 8.

7.3. New polymorphs: discussion and summary

It is interesting to note that all four new structures have almost the same B-O bond lengths
and B—0O-B bond angles as those observed in BoOs-I and vitreous B;O3. Although there
is no known crystal structure containing boroxol rings, the caiculated lattice energies of
these four structures are lower than that of B;03-1, and even if they are metastable af finite
temperatures, it seems possible that they are candidates for a new polymorph.

On the other hand, for vitreous B,O;, it has been claimed that there is no structure
model with the experimental density and a high fraction of boron atoms in boroxol rings
without layered rings. Crystals constructed in the manner of the layer model proposed
by Bell and Carnevale [45] were therefore generated. Six-membered rings, with adjacent
sheets overlapping but rotated by w/3 relative to each other, were hexagonally arranged,
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Figure 9. Overlapping B:Qg boroxol ring
models in adjacent layers of network, relatively
rotated by w/3 ead; ‘h’ indicates the interfayer
distance {45].

as shown in figure 9. The static lattice simulations were performed on these structures,
carefully varying the initial interlayer distances. However, the calculated distances between
the layers became longer and longer, and a stable structure could not be obtained. Our
potential model shows that boric oxide does not favour a layer structure.

Structures BoOs-d as well as BoOs-c could be structural units in vitreous BoOs. They
have as much as a 73% fraction of boron atoms in boroxol rings and this figure agrees with
that estimated for the vitreous material by Jellison et al [46] and Johnson et af [47]). In
addition they not only have reasonable B—O bond lengths and B-O-B bond angles, but they
also have a reasonable density, although it is still smaller than that observed for vitreous
B.03. Thirdly we note that the siructure has a three-dimensional network without layered
rings. The most realistic structure for vitreous B,O; is thought to be that in which B2O;-c
and B,0;-d are randomly connected and also some B3Oy units are replaced with BO; units
in order to reproduce the experimental density. The most characteristic feature of such
structures is that the three-dimensional networks are interlocking. and two or three BO;
units are the main connecting parts between B3Oy units. The new structures constructed
in this paper will be compared with the vitreous structures obtained employing the MD
method in the subsequent paper.

7.4. Lattice dynamics simulation

As the final component of this study we report the analysis of the vibrational properties of
the new structures. Our investigation is particularly motivated by the observation that the
large peak in the Raman spectrum of B»O3 glass at 806 cm™! is one of the strongest pieces
of evidence for the existence of boroxol rings.

Verhoef and den Hartog [48, 49] performed MD simulations of B205 glass. Although
their structures comprised only BO; triangles without boroxol groups, they concluded that
the vibrational modes of adjacent BO; triangles are decoupled sufficiently and a local
breathing mode can occur; indeed the peak at 806 cm™! in the experimental Raman spectra
was assigned to such a breathing mode of three oxygen atoms within each of the BO;
triangles.

In contrast, Bronswijk and Strijks [50] compared the experimental Raman spectrum of
vitreous BpO3 with that of crystalline B;O;. They concluded that the spectrum of crystalline
B,0O; does not show a strong, sharp and polarized band around 806 cm™! (see figure 10).

Since the structures discussed in the previous section contain a high percentage of
boroxol rings, lattice dynamics simulations were performed for the B1O;-I crystal, and
for B;0z-a and B,0a-d pseudo-super-crystals using potential C2 employing the GULP
program [51]. Energy minimization, i.e. adjustment of unit cell dimensions and internal
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Figure 10. Experimental Raman spectra [50] for (2) vitreous B2Os and (b} erystalline B203-1.

atomic coordinates, had already been performed, following which the vibrational frequencies
could be calculated by diagonalizing the dynamical matrix (i.e. the matrix of the second
derivatives of energy with respect to atomic coordinates) [5]. In addition, we employ the
quasi-harmonic approximation which assumes that the vibrational motion in the solid is
comprised of independent quantized harmonic oscillators whose frequencies vary with cell
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Figure 11. Calculated densities of states for (a) crystalline B2Os-1, (b} pseudo-super-crystal
B203-a and (c) pseudo-super-crystal BzOa-d. {See the text for (A), (B) and (C}.)
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Figure 12. Symmetric vibrational modes of the ‘free’

metaboric anion, Bgog'. All three are Raman active
Y Va V3 -

and polarized.

volume [52]. This assumption allows us to calculate the frequencies at the finite temperature
atbeit approximately and without explicit inclusion of anharmonic effects. The calculated
vibrational densities of states at 300 K are shown in figure 11.

We note first that in the spectrum of B2Os-1, there is a sharp peak at around 750 cm™
(see the position A in figure 10(a)). It can be assigned to a bending mode in the chain
structure [53], and is close to the experimental wavenumber of 720 cm™'. There is no peak
at 806 cm~!. However, in the spectrum of B;Os-a, the peak at ~750 cm™! disappears
being replaced by a new peak at ~820 cm™! (see position B in figure 10(b)), which can be
assigned to the breathing mode of B3Oy (12, see figure 12), and is close to the experimental
wavenumber 806 cm™!. In the spectrum of B,Oj3-d, which may be closest to the vitreous
B4, there is no peak at around 750 cm™!, although the structure includes BO; units. It
shows the peak at ~820 em™', although it is a little weaker than in the case of ByO3-a.

These results therefore support the hypothesis that the peak at 806 cm™' in the
experimental Raman spectrum in vitreous B2O3 can be assigned to the breathing mode
of BzOg units, although there are two remaining problems. The first is that the potential
used (C2} was not adjusted in order to reproduce the vibrational frequencies and there is
therefore a small offset in the calculated wavenumber. Secondly the structure of the pseudo-
super-crystal (B203-d) must of course differ from the vitreous structure of B,O3;. However,
even if this structure were more distorted, its vibrational properties should not be markedly
different, as long as there is the same fraction of boroxol rings in the structure.

1

8. Conclusions and summary

Ouwr LP fitting method, which has been applied to crystals and molecular clusters of B,Os,
has yielded several sets of potentials which can reproduce crystal structures or molecular
structures.

We found first that it is essential to employ a partial charge model with a B-O Morse
potential and a B~O-B bond-bending. three-body term in order to reproduce both crystal
structures accurately. Moreover, to reproduce the order of energies in different phases, new
potentials (C1 and C2}, which depend on the coordination number around the oxygen atoms
have been developed. When we compare the ‘molecular’ potentials with the ‘crystalline’
potentials, both potential sets failed when applied to both the crystal and molecular structures
simultaneously. The resuits also showed that different values for the B-O Morse potential
and the force constant for B-O-B were derived for the crystal and molecular states in a
manner which can be understood in terms of changes in the degree of ionic bonding

Finally, several new possible polymorphs of B,O3 were obtained by performing static
lattice simulations using potential C2, which can reproduce not only the structures but also
the order of the lattice energies of B;Oj3 crystals, B;O3-d is the first structural model for
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the basic uait of vitreous B,0O3, which can reproduce not only the B-O bond lengths and
the B—-O-B bond angles, but also the density, with 75% of boron atoms in boroxol rings.
The lattice dynamic simulations using this structure (and potential C2) also showed thal the
peak of the experimental Raman peak at 806 cm™' can be assigned to the breathing mode
of the boroxol rings. The important feature in this structure is thought to be the interlocking
three-dimensional networks with two or three BO; units connecting the B3Og units. More
exlensive ‘computer synthesis’ will enable us to obtain further possible candidates for
polymoiphs and vitreous structures. The subsequent paper in this series will explore the
generation of structures for vitreous B;O3 using MD technigues.
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Appendix. Periodic ab initio Hartree-Fock calculations

Table Al. Potennal energies with different lattice parameters for B2O3-1 and B2 O3-11 Ali
energics are relative values to the energy in the experimental structure. w, ¢, b and ¢ mndicate
cell volume and three lattice constants, Suffix 0 indicates an experimentally observed value. @
indicates a rminimum point.

B, 0O3-l
§E (eViBy03)

B20On-11
JE (eViB20a)

{1} (v/og)'7?

1.020 + 0.0709

1.010 + 0.0056 —-0.0058
1.005 -0.0052@ =0.0119@
1.000 0.0 0.0
0.995 + 0.0209 + 0.0271
0.990 + 0.0570 + 0.0744
0.980 + 10,1799

2) a/ag

1.02 + 0.0371 -0.0179
1.01 + 0.0005 -0.0197@
1.00 0.0@ 0.0

0.99 + 0.0349 +0.0419
(3) b/by

1.02 4+ 0.0137
191 -0.000i @
1.30 0.0

098 + 0.0431
(4} cfeo

1.02 ~0.0037 + 0.0269
L0l -0.0055@ + 0.0057
1.00 0.0 0.0@
0,99 + 0.0351
0.98 + 0.0323

In order to calculate the ab initio potential energy for geometries around the stable crystal
structures of B;03, we employed the periodic ab initic Hartree—Fock code CRYSTAL-92
[30].
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We used the 3-21G basis set and reoptimized the exponents of the outer shell [13,
54]. The reoptimized exponents were 0.15 and 0.40 for the boron and oxygen atom
respectively. Next, the total energies were calculated, varying the lattice parameters around
the experimental crystal structures of both B;0;. The results are given in table Al
The errors in the lattice parameters, compared with the experimentally observed values,
were 1.5% for B;03-I and 1.5% for B;O5-1I [2]. Thus the calculations reproduce the
corresponding experimental unit cell dimensions well for both structures. The calculated
ab initio potential energy data were used in the LP fitting.
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