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Abstract Atomistic simulation techniques are applied to the study of crystalline BzO3. New 
interatomic potentials are derived by fitting to ab initio energy surfaces derived from both 
periodic boundary conditions and molecular calculations, to which we add the restraints produced 
by the observed c r y s l  sfructures. A novef approach based on linear programming (LP) 
methodology is used in these fitting procedures. We find that the best potentials hove terms 
which are coordination number dependent. Our potentials are able to reproduce the crystal 
svuctures of both polymorphs of B203. Moreover, we predict the stability of new polymorphs 
with high bomxal ring contents which may be related to the StNCNres of vitreous phases. 

1. Introduction 

Boric oxide and borates have a highly complex structural chemishy, and there is a long- 
standing controversy concerning the smctural properties of vitreous B~03 111. For this 
reason there is a strong incentive to develop good procedures for modelling structures and 
properties of these materials using computational methods. In this paper we focus on the 
derivation of flexible and transferable interatomic potentials for the modelling of B203 and 
borates. Several interatomic potentials have been reported for the study of vitreous structures 
of Bz03. However, no attempts have been made to model the crystal slructures of B203. 
The approach used in this paper is based on the fact that crystal smctures have much 
information on bonding; moreover, we consider that it is necessary to derive interatomic 
potentials that reproduce several different crystal structures before proceeding to model 
vimous materials, the subject of part 2 of this study. 

We first, therefore, describe the background to atomistic simulation techniques and 
interatomic potential models of the type used in this study, with an emphasis on the 
difference between them and the quantum-mechanical techniques discussed in companion 
studies of BzO3 [Z, 31. Next, in order to overcome the difficulties in deriving interatomic 
potentials, a new procedure known as the LP fitting method is developed in which we derive 
potentials from ab initio calculations subject to the restraints provided by the observed crystal 
ShuCNreS. The newly derived potentials obtained using this latter method are applied to 
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the two crystal structures of Bz03 and are then compared with the potentials previously 
reported for vitreous BaO3 by other authors. We use ab initio data both from periodic 
boundary conditions calculations on the crystal structures and from calculations on relevant 
small molecules. Wc show that the latter are unable to generate satisfactoly potentials for 
use in modelling crystal structures and properties-a result which has general implications 
for the use of calculations on small molecules in investigating bonding i n  ionic and semi- 
ionic solids. Finally, we apply our potentials to the investigation of the stability of novel 
polymorphic structures of Bz03 which may be closely related to those of the vitreous 
materials. 

2. Atomistic simulation techniques 

Computer modelling techniques have made great progress in recent years and are 
increasingly explaining or predicting the structures and properties of solids [4]. These 
techniques may be classified into two groups: the first starts from the Schr6dinger equation 
and calculates the electronic structure of the system; the second develops interatomic 
potentials and applies the resulting potentials to the system under study. 

We have recently applied a range of electronic structure techniques to the study of 
BZO, and borates [Z, 31, These allowed us to model successfully the polymorphs of B203 
and yielded useful information on the nature of the bonding in the materials. However, 
in modelling complex structures such as vitreous solids, methods based on interatomic 
potentials are needed. Indeed both lattice statics and dynamics have been extensively used 
in simulating solids including ionic and semi-ionic materials [ 4 4 ] .  The success of these 
methods in modelling structures and properties of perfect and defective solids encourages 
their application to the challenging structural problems posed by crystalline and amorphous 
BzOp. 

3. Interatomic potential models 

Many studies have been reported concerning interatomic potentials for oxide materials [5,6].  
We now discuss the functional forms and the methods used to derive appropriate parameters. 

3.1. Potentialfunciions 

Oxides have been commonly described by the ionic model with formal or partial ionic 
charges assigned to point entities which also interact via short-range terms. The interactions 
between point charges arise from the long-range electrostatic (Coulombic) forces between 
ions, while the short-range interactions come from the overlap of the electron charge clouds 
of the interacting ions. 

The simplest and most widely used short-range form is the central-force pair-potential: 

The total potential energy V is summed over all the pair interaction terms, each of which 
is dependent only on the distance between the ions, 

The most widely used function form for pair-potentials for ionic solids is the 
Buckingham potential: 

v(rij)  = exp(-rij/pij) - ~ ~ ~ r ; ~ .  (2) 
The second term is often added to express dispersion and other attractive terms. 
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Another commonly used functional form, which is considered to be suitable for 

(3) 

modelling the effect of covalent bonding is the Morse potential: 
2 V ( ~ i j )  = Dij(1 - exp[-pij(rij -ro)]} . 

Although models using these pair-potentials have reproduced reasonably well not only 
structures but also properties of oxide materials, more sophisticated models are needed 
to include polarization or covalent bonding effects more precisely. 

Polarizability is described straightforwardly and effectively using the shell model [7] in 
which an ion is described as comprising a massless shell of charge Y ,  and a core in which 
the mass is concentrated; a harmonic spring connects the shell with the core. This model 
has allowed accurate calculations of dielectric, lattice-dynamical and defect properties of 
ionic solids [5, 61. 

In order to express the directional properties of covalent bonding, a three-body term 
may be added, the most common of which is the simple- harmonic, bond-bending form: 

(4 1 v(e) = ;Ks (e  -m2 
where K B  is the bond-bending force constant and So is the equilibrium bond angle. 

For crystalline silicates, simple pair-potential models have been used [8, 91. But the 
greatest success has been enjoyed by shell model potentials, including threebody terms [lo, 
111, which have performed well in modelling the structures and properties of a wide range 
of crystalline and amorphous materials [4, 61. 

3.2. Derivation of inferutomic potentials 

Interatomic potentials have been derived by two main procedures. The first is the empirical 
method. The parameters in the potential model are fitted so that they can reproduce 
the experimental structures and/or properties (e.g. elastic constants, dielectric constants or 
vibrational properties) as accurately as possible. This method may be applied even when 
the only data available are the crystallographic parameters, although it is important to use 
as many data as possible for fitting and testing potential models. 

The other approach is to use non-empirical or semi-empirical methods, employing 
quantum-mechanically calculated data for the relevant potential energy surfaces. In the 
electron gas method [IZ], electron densities are calculated for the isolated interacting 
atoms, and then the Coulomb interactions, the kinetic energy, exchange and correlation 
contributions to the interaction energy are calculated. Ab initio methods are, however, 
increasingly employed on clusters or periodic arrays of atoms. For example, using the ab 
initio, periodic Hartree-Fock techniques available in the CRYSTAL code, Gale eta1 1131 
obtained a potential energy surface to which they fitted a potential which then reproduced the 
structure and elastic constants of ff-AI203. In the case of cluster calculations, the importance 
of crystal field effects must be stressed. For example, electron-gas studies commonly 
introduce the Madelung potential appropriate to the crystal when the wavefunctions are 
calculated [14]. In addition, we should also note that several ‘ab initio’ studies [S, 91 were 
obliged to use experimental data on elastic constants to determine the partial charge values. 

One of the most important aspects concerning a potential model is its transferability. 
Some potentials successfully reproduce the structures of several polymorphs using the same 
potentials [S, 151. Moreover, it has been found that potentials fitted to the crystal structure 
and properties of Si02 when applied to vitreous states yield models which reproduce 
successfully the experimental R D F s  [ 161. The degree of transferability of interatomic 
potentials is, however, commonly a matter of controversy and uncertainty. Careful attention 
will be paid to this feature in the potentials reported later in this paper. 
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4. Application of prcviously reported potentials to crystalline B203 

As noted earlier several potential models have been reported specifically for vitreous BzO3 
[17-231. In particular, seven potentials were derived by Verhoef and den Hmog I231 
which have more general functional forms. They were modified from the 'Vl'  potentials 
of Soules [17, 181 and the 'V5' potential of Xu et a1 [22]. All seven potentials have the 
same Born-Mayer-Huggins form: 

(5 )  
The V2 potential was modified from the VI potential by Verhoef and den Hartog so that 
correct vibrational frequencies were obtained. The V3 potential had the same pair-potential 
component as the V2 potential and was supplemented with the 0 - B d  three-body bond- 
bending term of the form: 

vi,,k(e) = fKij,(e -BOY (6) 
where 6, is 120" for 0-B-0 and 130" for B-O-B. The B-0-B three-body term was also 
added in the V4 potential. In the same manner, the pair-potential parts of the V6 and 
V7 potentials were modified from the V5 potential to obtain correct frequencies, and the 
B-0-B three-body term was added to the V7 potential. The potential parameters are given 
in table 1. 

vj (T)  = &j exP(-T/Pij) -F G4je2/T. 

Figure 1. The Structure of 810,-I 1241. 

These potentials do not appear to have been evaluated with respect to their ability to 
reproduce the properties of the crystalline phases of Bz03. We therefore used them in 
lattice energy minimizations, starting €rom the experimental structure of 8203-1 (figure 1) 
[24] and B203-E (figure 2) [25]; for this purpose we employed the GULP code, which can 
perform a variety of lattice statics (including full minimizations) and dynamics calculations 
[26]. As the original potentials were not applied to fourfold-coordinated boron atoms. the 
equilibrium angle eo in the 0-B-O three-body interactions is set to be 109.47" in B203-11. 
The calculated results are shown in tables 2 and 3. They may be summarized as follows: 

(i) For the structure of B203-I, potentials V4, V5, V6, and V7 reproduce the experimental 
lattice parameters, B-O bond lengths and 0-B-O bond angles reasonably. However, none 
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Figure 2. The structure of B z q - l l  [E]. 

Table 1. Pair-poientid a d  three-body parameten in the potentials of Verhoef and den Hmog 
[23]. A , ,  and pr, represent shan-mge parameters. y, and Kj- i - j  represent the charge and 
bond-bending farce constants respectively. 

C u e  

VI 
v 2  
v 3  
v4  
v 5  
V6 
v 7  

~ 

A 8 n  A n 0  A o o  
(10' U mol-') 

13.4 78.63 182.3 
9.614 33.72 79.63 
9.614 33.72 79.63 
6.614 33.72 79.63 
5.424 1052 149700 
0.6645 128.8 18330 
0.6645 128.8 18330 

P 8 n  

- 
0.29 
0.29 
0.29 
0.29 
0.16 
0.16 
0.16 

P n p  Po0 

0.29 0.29 3.0 -2.0 
0.29 0.29 2.0 -1.333 
0.29 0.29 2.0 -1.333 
0.29 0.29 2.0 -1.333 
0.165 0.17 3.0 -2.0 
0.165 0.17 1.050 -0.7 
0,165 0.17 1.050 -0.7 

(A) q n  YO 

K O - n - o  K n - 0 - 8  
(W 

0 0 
0 0 
1000 0 
LO00 500 
0 0 
0 0 
I500 0 

of them can reproduce the B-O-B bond angles. Even for potential V4, which includes 
the B-0-B three-body term, the B l - 0 - B 2  angle is still 8" larger than the experimental 
value. This result explains why the B-0-B bond angles obtained in MD simulations using 
these potentials were always large. However, the reproduction of the B-0-B bond angles 
is crucial for correctly describing the manner of connection of the BO, triangles-a key 
feature of the structural chemistry of these materials as discussed later. In this context 
it is interesting to note that potentials which cannot reproduce the B-O-B bond angles 
do not predict accurate experimental densities of B203-I, even if they can reproduce the 
experimental bond lengths. 

(ii) None of the potentials can reproduce the structure of B203-II, indicating that the 
bonding for the fourfold-coordinated boron atom is different from that for the threefold- 
coordinated atoms. Even potential V5. which used in its derivation the crystal structure of 
the alkaline borate K B 5 0 8  which comprises BO4 tetrahedra, cannot adequately reproduce 
this structure. The explanation is probably in the difference in the bonding. Indeed we 
have shown that there is a considerable difference in the ionicity and the nature of the 
bonding between B203-II and the alkaline borates [Z, 31. It is interesting to note that these 
potentials do not lead to the generation of a B04-type environment in molten BzO,; but the 
nature of the structural transformation in B203  may be different from the observed trigonal 
to tetrahedral conversion of boron on the addition of alkaline oxide. This point will be 
discussed further in subsequent papers which model the structure of vitreous B203. 

Overall, however, i t  is clear from the results summarized in this section that previously 
published potentials have severe deficiencies regarding their ability to reproduce observed 
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crystal structures of two phases of B203, Improved models are needed if we are to model 
vikeous phases of this material. 

Table 2. Static lattice simulations of lhe smcture and properties of ElOr-I using previously 
reported potentials [23]. The values in angle brackets were obtained from the experimentally 
observed structures [24]. 

Potential sets for static lattice simulation 

V I  v2 v 3  v4  V5 V6 v 7  

(iJ Cdculured lorrice energies in experitnenml ( E l )  and energy-minimized (E2J . w ~ e r u r e ~  (eV/BzO>) 
El -179.34 -80.40 -80.20 -80.19 -202.26 -24.78 -24.48 
E2 -182.25 -81.70 -81.70 -80.80 -203.91 -24.98 -24.96 

. .  . . .  . 
U t 79.49 
a t 9.96 
b t 9.96 
e t 48.44 

Bond length ( A )  
El-01 1.378 
E 1-02 1.378 
BI-03 1.372 
B2-01 1.378 
BZ-02 1.378 
E 2 4 3  1.372 

t 73.99 
t 8.84 
t 9.96 

+ 46.89 

1.364 
1.364 
1.358 
1.364 
1.364 
1.358 

t 74.12 
t 8.92 
t 8.92 
t 46.78 

1.364 
1.364 
1.358 
1.364 
1.364 
1.358 

t 6.10 
+ 2.62 
+ 2.62 
t 0.76 

1.394 
1.370 
1.383 
1.370 
1,394 
1.383 

Bond ungle (des)  
01-81-02 119.8 119.8 119.9 119.7 
01-El-03 120.1 120.1 120.0 121.4 
0 2 - E l 4 3  120.1 120.1 120.0 118.6 
01-82-02 119.8 119.8 119.9 119.7 
El-01-E2 179.1 179.1 179.1 136.6 
EI-OZ-EZ 179.1 179.1 179.1 136.6 

(iii) Pmpenier for energy-,ninim'zed , ~ I I U C I U ~ C V  
Elosric et,nstmi (CPa) 

E(1, 1) 167.8 77.99 107.4 162.5 
Ect. 2) 71.8 33.0 37.3 45.0 

Bulk modulur ( G f d  
K 103.8 47.9 60.7 84.2 

Sturic dielectric consrant (experiment: 3.0-3.5jh 
aoc1. I) 2.14 2.17 I .90 2.64 
91c2. 2) 214 2.17 1.90 2.64 
E d 3 ,  3) 2.12 2.18 1.58 6.40 

t 8.66 
t 6 . 1 2  
t 6 . 1 2  
-3.52 

1.348 
1.406 
1.408 
1.406 
1.348 
1.408 

120.2 
124.1 
115.4 
120.2 
150.3 
150.3 

183.6 
31.7 

82.3 

2.78 
2.78 
3.49 

t 8.64 t 6.84 
+6.1 I + 5.07 
+6.1 I t 5.07 
-3.52 -3.22 

1.348 
1.406 
1.408 
I406 
1.348 
1.408 

124.1 
1S.l 
115.4 
120.2 
150.3 
150.3 

22.5 
3.9 

10.1 

2.78 
2.78 
3.49 

1.376 
1.375 
1.408 
1.375 
1.376 
1.408 

120.0 
120.4 
119.8 
120.0 
146.0 
146.0 

30.3 
-1.1 

9.4 

1.83 
1.83 
2.53 

(1.404) 
( 1,366) 
(1.337) 
( 1.336) 
( 1.400) 
(1.384) 

(119.0) 
(114.7) 
(126.1) 
(121.5) 
(130.5) 
(128.3) 

Experimenral values U = 135.8 A3, <L = h = 4.336 A and e = 8.340 A from [24]. 
From [271. 

5. New potential derivation method (LP fitting method) 

5.1. Problems of existingfitting method 

We first review the common method for fitting interatomic potentials, as i n  the widely used 
codes (THEPIT [28] and GILP) which have been successfully applied to many systems. 
The general method in such fitting procedures is as follows. 

(i) Read in the experimental structures, properties and initial potential parameters. 
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Table 3. Static lattice simulation of the structure and properties of 82O3-li using reponed 
potentials [231. The values in angle brackets are again from the experimentally observed stmcme 
1251. 

Potential sets for static lattice simulation 
(Experimental . .  

VI v2 v3 v4 v5 V6 Vl data) 

(i) Calculuted lnlliee energis.? in experimental ( E I J  and energy-minimized (E2)  s1111(c1ur.s (eVBzO3) 
El -179.39 -80.39 -80.07 -79.38 -201.36 -24.67 -24.18 
E2 -182.20 -81.67 -80.98 -80.04 -204.71 -25.08 -24.84 

(iiJ Energy-minimiredstrucrurp (ratio with wspect IO experimentd value); unit-cell vdume  (U). luttice comtanb 
fa, b. CJ (96) " + 119.13 + 116.72 + 17.82 + 15.15 t.30.50 + 38.48 + 15.65 
n +29.02 +28.98 f2.28 +2.26 C10.13 i.10.13 i3.03 
b i29.02 +28.98 f 2 . Z  +2.26 + 10.13 + 10.13 C3.03 
c +I534 +14.16 +8.27 +6.73 +8.74 +8.74 +5.81 

B1-01 1.374 1.360 1.360 1.371 1.363 1.363 1.412 (1.373) 
81-02 1.378 1.363 1.559 1.538 1.399 1.399 1.546 (1.506) 
81-021 1.363 1.577 1.542 1.399 1.399 1547 1.508 (1.508) 
81-02'' - - 1.603 1.656 - - 1.558 (1.512) 

01-51-02 120.2 120.2 111.4 108.1 120.9 120.9 110.1 (110.2) 
01-81-02' 120.2 120.2 110.3 112.4 120.9 120.9 110.0 (115.8) 
01-81-02'' - - 110.0 111.0 - - 109.9 (113.1) 
02-81-02' - - 109.7 110.5 - - 109.2 (107.4) 
81-01-81 180.0 180.0 164.8 146.1 180.0 180.0 161.2 (138.6) 
81-02-81 180.0 180.0 121.4 118.6 180.0 144.7 121.4 (ll8.7} 

Bond lengrh (a) 

Bond angle fdeg) 

( i i i j  Properties for energy-minimked struclwe.~ 
Elastic eonstunt (GPuJ 

E ( I .  I )  480.6 217.6 418.7 406.2 204.3 250.3 326.8 
E(1.  2) 2.6 I .o 57.0 6.3 -42.1 -5.2 46.6 

K 161.9 73.2 177.5 139.6 652.9 80.0 140.0 
Bulk modulur (CPU) 

Sintic dielectric cansrnnt (experiment: 3.0-3.SJh 
Etl(1,  I )  2.13 2.17 2.26 2.02 2.00 2.00 1.44 
C d 2 ,  2) 2.11 2.05 2.29 1.83 3.33 3.33 1.29 
€0(3, 3) 2.16 2.20 2.34 1.82 2.71 2.71 1.29 

a Experiment& values U = 148.6 .is, a = 4.613 A, b = 7.803 A and c = 4.129 A from [U], 
From [271. 

(ii) Calculate the cell strains ( e ( i ) ;  i = 1 4 ) ,  internal strains ( ~ i j ( i ,  j ) ;  i = I -N ,  j = 1- 

(iii) Calculate the weighted square sum of the errors S 
3) and properties (C( i ) ;  i = I-m). 

s = wlis(iY + W z i j E i j ( i .  j)'  + ut;i(C(i) - ~ ~ ~ ~ ( i ) ) ~  (7) 
ij 

where uq,, wzij and w;i are weighting factors which control the contribution of each term 
to S and C=&) are the experimentally observed properties. 

(iv) Change the potential parameters in order to reduce the residual S ,  via a least-squares 
fitting algorithm. 

(v) Iterate from (ii) to (iv) until S is minimized. 

This approach can be used for a wide range of fitting problems and the procedure is 
especially easily applied or refined when there are reasonable initial potential parameters. 
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However, when this method was applied for B 2 0 3  crystals, starting from either reported 
potential parameters or from modified ones, we did not obtain acceptable potentials. In 
most cases, the ‘best fit’ potential still distorts the experimental structure excessively. 

The reasons for this problem are as follows. 

(i) If an initial parameter set is poor, the least-squares fitting procedure will go to 
the nearest local minimum which is commonly not the desired solution. One possible 
solution is to try as many initial sets as possible, but such a procedure may be unreliable 
or computationally expensive. 

(ii) The weighting factors strongly affect S and they easily change the variation of S 
with the parameters, and may lead to an undesirable local minimum. In the case of a 
layered system, even if quite small residuals of strain are obtained, they are enough to 
distort its structure substantially. The other problem is that completely differcnt types of 
measurements (e.g. structure and properties) are subsumed under S. and it is not always 
easy to set up the proper weighting factors appropriate for such different data. 

(iii) The functional forms of the potentials may be unsuitable, although it is often difficult 
to show unambiguously that the problems are arising from this factor. 

One strategy to overcome these difficulties is to blend ab initio methods with empirical 
fitting [8, 91. Moreover, effective fitting procedures using this combined approach require 
a new type of approach as discussed in the next section. 

5.2. The linear programming (LP)  fitting method 

The LP fitting method is designed to fit to ab initio surfaces with the added constraint of 
requiring the reproduction of observed experimental structures. Moreover, the approach is 
effective in overcoming several of the problems identified in the previous section. 

First, regarding the problem of finding the global minimum, if the problem can be 
linearized, the global minimum can be found within a finite number of iterations. The second 
point is that separating the criterion of crystal stability from the evaluation of properties 
can make the fitting problem much easier. It is also desirable that the experimcntal data 
(such as the structural stability conditions) should be separated from the ab initio potential 
energy data as components of the cost function. Moreover, when common potentials that 
can reproduce several different structures at the same time are dcsired, the introduction 
of independent sets of structural stability conditions is more reasonable than the use of a 
unique formula for S. The third point is that it is very helpful to know whether a solution 
of the problem is feasible, and also which condition obstructs the solution. In particular, i t  
is not clear how well the covalently bonded BzO3 system can be described with the existing 
potential functions. 

These ideas lead to new potential fitting method based on the linear programming (LP) 
method, which is a well-known technique in the field of economics and mathematics [29]. 
Several special considerations are given in order to adapt the potential fitting problcm to 
the general LP problem as follows. 

(i) All the conditions that need to be satisfied are separated into two categories: the 
first comprises several sets of inequality conditions: the second is a cost function which 
should be minimized. The fitting procedure essentially involves the determination of the 
optimum solution that minimizes the cost function within the solution space that satisfies 
all the inequality relations. 

(ii) The conditions of structural stability are defined in the form of inequality relations. 
Here, the term ‘structural stability’ means that the relaxed structure does not distort 
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appreciably from the experimental structure. The lattice energy in the experimental structure 
is the minimum point in the configurational space (3N-dimension) of the energy of the 
crystal with respect to the coordinates of component ions. 

Thus the lattice energy E depends on the atomic coordinates: 

E = E ( x I ,  X Z . .  . . , x.) (8) 
where the x; are the position vectors of the ith atom. The equilibrium condition requires 
therefore: 

a E / a x ,  = o a2E/aX; =. o (9 ) 

at the structure of minimum energy (XI = x l c .  .., x, = x , , ~ ) .  We can therefore write that 
VAX;: 

E ( x I , ,  XZE. .., ~ i r  + Axi. .., ~ m )  1 E(xI,, X Z ~ .  .., ~ ; r ,  . . ,xn.)  (10) 

and 

E ( x ~ e ,  X Z ~ ,  .., ~ i r  - AX;, .., xnc)  > E(xle ,  xzrr . . , ~ ; r ,  ..) xm) (11) 

must be satisfied. When the lattice parmeters a, b, c, 01, ,9 and y (6 variables) and the n 
atomic positions (n x 3 variables) are taken into account, a total of (6n + 12) inequality 
conditions is generated. 

(iii) The weighted sum of the residuals between the ab initio data for the potential energy 
surface and the corresponding calculated values using the present values of the variables of 
the potential parameters is defined as the cost function. Therefore, the LP method tries to 
find the solution which achieves the global minimum for the residual within the solution 
space that satisfies the structural stability conditions. However, there are limitations for 
the application of the LP method. First, it is not easy to include the evaluation of various 
physical properties in the cost functions, because within the LP scheme the complex form 
of such properties must be linearized using the potential parameters. We also note that the 
cost function must be the linear weighted sum of potential parameters instead of the square 
weighted sum of them, as in conventional least-squares fitting; although this latter problem 
poses no severe difficulties. 

The most important point of the LP method is that the structural stability conditions are 
not included in the cost function, but in the inequality relations. Therefore, the merit of this 
method is that, even if the initial potential functions are poor in describing the structure, 
the procedure yields a solution which maintains the structure in equilibrium, or it indicates 
that there is no feasible solution. 

(iv) Once the problem is described within the frame of LP, the solution is quickly 
obtained even by a personal computer. The most significant problem with this method is 
that the fitting problem must be linearized regarding the potential parameters. Inevitably 
some parameters (e.g. the p parameter in Buckingham form in (Z), or the fl and parameters 
in Morse form in (3)) cannot be linearized simply and must remain fixed as constants during 
one solution cycle. However, each solution cycle is very quick, allowing a thorough search 
of a variety of combinations of e.g. p or ,9 to be easily performed, in order to find the 
global minimum. 

The algorithm used by the LP fitting method comprises the following stages. 

(i) Linearization of each of the terms of which the total lattice energy E is comprised: 

(12) E = E,  + Ez + E3 + E4 



8668 A Takaah er a1 

where E,, E l ,  E3 and Ea are the contribution of the Coulombic energy, pair-potential, 
three-body and four-body lerms. 

For Coulombic terms, they are calculated straightforwardly from the crystal structure 
and if fixed charges are used, they are dealt with as constants in the inequality relations. 

In the case of short-range potentials specified using the Buckingham form: 

The values in the outermost parentheses are calculated only from the crystal structures, and 
are independent of the unknown variables A and C. when p is fixed. 

In the case of the Morse form of the short-range potential. we have: 

Once more the value in the outermost parenthesis is calculated only from the crystal 
structures, and is independent of the unknown parameters Dij when Bij  and ro are fixed. 

For the simple harmonic three-body terms, 

The value in the outermost parenthesis is again calculated only from the crystal structures, 
and is independent of the unknown parameters K B  when 00 is fixed. Four-body terms are 
dealt with in the same way as the three-body terms. 

(ii) Formulation of the inequality conditions for the structural stability condition: 

E ( x I , ,  .., xir * AX,. .., &) > E(xi , ,  ... x l e .  .., ~m). (16) 

The coefficients of the unknown variabIes ( A ,  C, D,j and K g  etc.) are calculated for each 
structural configuration. and (6n + 12) sets of inequality relations are generated. As an 
example, we consider one simple model for Bz03, which includes the Morse form for 
the B-0 interaction, the Buckingham form for the 0-0 interactions, and the three-body 
term for the 0-B-O interactions giving therefore four variables (DB-0, Ao-0, CO-0 and 
Ko-s-o). The lattice energies for an experimental structure and any varied structure can 
be arranged for the experimental structure, 

E o = ~ ~ o . I D E - o  +~~o . zAo-o  -ff0.3c0-0 +f fO0 .4K0-B-O > 0 (17) 

for any distorted structure, 

Ei ~ i . 1  DE-o + U ~ . Z A O - O  -ffi,3C0-0 +ff i ,4KO-E-O > 0 (18) 

where the a;,j are calculated only from the crystal structure. Equation (14) provides one 
inequality relation for its configuration: 

Among all the inequality relations, twelve come from the variations of the cell parameters 
( a A ~ a , b A 3 t b , c A * c C , f f A ~ f f O l r B A i ~ , ~ A ~ ~ ) ,  and6n  come from the variations of 
internal coordinates ( x , A 3 t t x , ,  y i A i y i , z i A * z i ) .  
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(iii) Definition of the cost function S: the deviation between the ab initio data on the 
potential energy surface and the corresponding value estimated from the linearized sum of 
the parameters are summed up to give the cost function S. 

S = ~ w i ] E y ' - E ~ I  (20) 
i 

where wi is the weighting factor, and E:h and E r  are the energies derived from the ab 
initio calculations and using the current values of the potential parameters. Usually all the 
weighting factors are set to 1, and do not need to be changed. 

(iv) Addition of the extra inequality conditions if necessary: for example, if the total 
lattice energy is restricted within some specific range (for example, E,,, < E and E < E,,, 
are given), two inequality relations are added in the same manner as in (ii). It is also very 
easy to specify the difference of energies between several different structures (for example, 
when the energy differences AElz and AEz) between three polymorphic structures are 
given, El + AElz < E2 and Ez + AEz, < E3 are added) . 

(v) Application of the general LP algorithm: the coefficients calculated from (i) to 
(iv) generate the general matrix elements for LP and the variables are solved so that they 
minimize the cost function S at the finite calculation steps. 

(vi) Iteration from (i) to (v). changing the non-linear parts (e.g. p .  f l ,  or TO) to yield 
the solution which locates the global minimum. As many combinations as possible of the 
unknown parameters are applied systematically. 

We may compare this L P  fitting method with the other general algorithms as follows. 
The strengths of the method are first that i t  is especially suitable for the ill-conditioned 
problem, where the crystal structure is apt to move toward a catastrophic change (for 
example, in the case of layered or planar structures). Because the structural stability 
conditions are absolutely satisfied during the solution, it can always prevent the distortion of 
its structure. The method is also suitable for the simultaneous fitting of several structures, 
because all the structural stability conditions are satisfied independently and simultaneously. 
Secondly, when the linearized coefficients are output, the potential energy surface which 
depends on the variables (A,  C, Djj and KB) can be easily analysed, because it is simply the 
linear sum of these terms. In particular, when a satisfactory potential cannot be obtained, it 
is straightforward to find which stability condition obstructs the solution. Thirdly, the global 
minimum can be obtained with very modest computer resources. There is no problem about 
setting the initial conditions or the weighting factors. 

i 

'. 
'.. -. .. .. I -. *. Figure 3. Torsion angle # within the BO, triansle. defined 3s the angle 

between two planes, wch of which is defined by three air" (i. j ,  k )  and (j. k. I )  
0 respectively. 

The main weakness of the method is  its limited range of applications. The requirement 
that all the conditions must be linearized is very restrictive. Therefore, features including 
fitting to crystal properties or the use of the shell model cannot be included at the moment. 
In such cases it is possible to use the LP fitting procedure as a starting point and to refine 
the resulting parameters by using more general fitting programs. It is interesting to note that 
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the LP method is based on linearized optimization with constraints, while the other widely 
used methods are based on non-linear optimization without constraint. It is likely that, in 
the future, the two methods will approach each other more closely. 

6. Application of the LP fitting method to 8 2 0 3  crystals 

We now apply the new LP fitting method to the derivation o f  interatomic potentials for Bz03 
crystals. Our study embraces both B203-I and Bz03-Il smctures. Two types of ab initio 
calculation are used: first, the periodic boundary conditions Hatree-Fock (HF) methods 
[30] and secondly calculations on small molecules. Energy surfaces based on the former 
techniques will be described first. 

Tablc 4. Fitted potentials (AI-A5) based on the BzO~-1  smaure and Ilb imrio data. 

Polenlid sets 

Paramelen A1 A2 A3 A4 A5 

Churge 
q(B) + 2.7 +2.7 + 2.7 i 1.5 + 1.2 

-1.8 -1.8 -1.8 -1.0 -0.8 
M o m  pormridj>r 8-0 

D ( fv)  2.580 1.549 1.344 0.466 0.326 
B ‘$1 2.5 2.7 2.7 2.7 2.7 
ro (A) I .55 I .59 I .59 1.59 1.59 

Buckmghum poieniiol fur 0-0 
A (eV) 2229.0 6317.0 5878.0 795.0 727.0 
D (AI 0.36 0.35 0.35 0.35 0.35 . . .  
c ( e v  LG) 0.0 935.2 662.2 60.9 80.9 

Buckinghum porenrinlfor 8-8 
A (eV) 0.0 0.0 0.0 0.0 0.0 
D (A) 0.35 0.35 0.35 0.35 0.35 

456.3 9.1 19.4 

Three-body iermfur B-0-B (61 = 120) 

Four-body term for 0-8-04 
k (eV rad-?) 8.08 4.79 - 6.63 2.53 

k (eV) 0.85 - 
1 

- - - 

6.1. Potentials based on periodic HF methods 

6.1.1. Fitting to B z 0 3 - I  structure. The experimental structural data of Bz03-I are used 
to obtain the structural stability conditions (thirty-six structural configurations; all lattice 
constants and internal coordinates are varied), while the ab initio potential energy data 
(eleven structural configurations; see table AI),  which are derived from the Hartree-Fock 
techniques with periodic boundary conditions employing the CRYSTAL code [30], are used 
as components of the cost function. Further details of the latter calculations are given in 
the Appendix. 

Morse potentials are used for the B-O interactions. Indeed when a Buckingham potential 
was used for this interaction no acceptable solution was obtained. As noted. Morse functions 
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model covalent bonding and as such they can compensate for some part of the lattice energy 
that is lost on reducing the effective charges, so a 90% ionicity model is used instead of 
the formal charge in the first three potentials (A1 to A3). Buckingham potentials are used 
for the 0-0 and B-B interactions. Potential A1 includes pair, three-body plus four-body 
terms (discussed below); potential A2 includes pair and three-body terms and potential A3 
includes only pair-potential terms. In potential A4 and potential A5 charges are reduced to 
50% and 40% ionicity. 

Table 5. Static lattice simularian of the suucture and properties of Bz0,-I using hued potentials 
(AI-A5). The experiment daw [24] are glwn in brackets. 

Potentid sets for static lattice simulation 

A I  A2 A3 A4 A5 

(iJ Cdculated lullice energies in experrmental ( E l )  and energy-minimized (E21 struclures (eV/BzOlJ 
EL -182.47 -183.95 -181.11 -52.99 -34.81 
E2 -182.76 -184.81 -181.70 -53.05 -34.90 

haice C ~ " I . V  (U. b, c )  (90) 
U t 1.89 -3 60 t 2.05 -2.92 -5.48 
a t 1.49 t 0.79 t 2.54 t 0.19 t 0.04 

(ii) Energy-minimized slrwlure (percenlnge error wirh rerpect IO exprrimenml vuluei; mil-cell vr,lume (vj,  

h + 1.49 + 0.79 + 2.54 + 0.19 t 0.04 
c -1.09 -5.09 -2.94 -3.29 -5.55 

81-01 1.386 1.375 1.372 1.405 1.393 
BI-02 1.358 1.384 1.374 1.357 1.371 
81-03 1.366 1.384 1.373 1.374 1.381 
BZ-01 1.358 1.385 1.374 1.356 1.371 
82-02 1.386 1.375 1.372 1.404 1.392 
82-03 1.366 1.384 1.373 1.375 1.382 

Bond lpnjirh (A)  

Bond angle (des) 
01-BI-02 120.3 118.6 119.1 119.3 118.7 
01-B 1-03 117.7 121.4 120.7 115.4 117.6 
02-8 1-03 122.0 119.9 120.2 125.2 123.6 
01-B2-02 120.3 118.5 119.1 119.3 118.7 
BI-01-BZ 134.7 134.6 140.1 130.4 131.1 
B1-02-BZ 134.7 t34.6 140.1 130.4 131.2 

E l l .  2) 122.8 157.9 96.4 52.3 32.4 
Bulk modulus (CPU) 

'239.8 319.5 227.1 93.7 60.5 
Slulrc dielectric CO~SI(UII (experiment: 3.0-3.51" 

ed l .  I) 1.64 2.08 2.17 1.80 1.84 
FO(2. 2) 1.64 2.08 2.17 1.80 1.84 
E d 3 .  3) 1.68 4.05 2.77 2.41 2.57 

(1.404) 
(1.366) 
(1.337) 
(1.336) 
(1.400) 
(1.384) 

(119.0) 
(114.7) 
(126.1) 
(121.5) 
(130.5) 
(128.3) 

.I From [271 

The four-body term, included in potential A3 is a torsional term applied around the 
0-B-O-0 bond angle in the BO3 triangle and is often taken to be of the form: 

v = K4(1 - cos(24)) (21) 

where K4 is a force constant and q5 is the torsion angle. This term is added to retain planarity 
of the BO3 triangle, as shown in figure 3. 
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The fitted potential parameters are shown in table 4 and the resulting static lattice 
simulations for both Bz03-I and B203-U are given in tables 5 and 6 respectively. 

Table 6. Static lamce Simulation of the stmcture and properties of B2Oj-I1 using fitted potentials 
(Al-A5). Experiment data [25] in bracket. 

Potential sets 

AI A2 A3 A4 As 

(i) Cnlcoloted lattice energies in experimenlal ( E l )  and enerCy-minimrred (E2) structures (eV/BiOp) 
El -183.74 - 183.89 - 179.54 -54.08 -35.70 
E2 -184.12 -184.20 -180.08 -54.29 -35.77 

(ii) Energy-minimiwd structure (pereenrqe error with resprcr to experimmml value): unir.eell volume ( v J .  
lanice c o n ~ t ~ n t ~  fa. b, cJ (%) " + 0.52 + 4.12 +5 .15  t 3.83 + 0.56 
a + 0.24 + 0.94 t2.11 + 0.48 -0.38 
b + 0.24 + 0.94 + 2 . l l  + 0.48 -0.38 
e -0.33 + 2.03 t 1.12 + 1.82 + 0.96 

Bond length ( A )  
81-01 1.429 1.398 1.445 1.393 1.406 (1.373) 
B 1-02 
B 1-02' 
BI-02" 

01-B1-02 
01-BI-02' 
01-B 1-02" 
02-81-02' 
81-01-8 I 
B1-02-BI 

Bond angle 

1.450 
I .47 I 
1.532 

107.1 
(degt 

113.6 
111.3 
109.3 
138.6 
119.3 

1.492 
L.540 
1.555 

110.3 
114.4 
111.7 
110.6 
138.7 
118.5 

1.509 
1.510 
1.521 

111.0 
110.8 
111.8 
108.1 
142.0 
117.7 

1.439 1.462 (1.506) 
1.470 1.497 (1.508) 
1.672 1.553 (1.5 12) 

104.1 106.8 (1  l0.2) 
117.0 115.2 ( 1  15.8) 
1125 111.8 (113.1) 
109.3 110.4 (107.4) 
131.5 134.7 (138.6) 
119.3 118.7 (118.7j 

Bulk modulus (CPU) 
588.0 591.4 453.0 67.8 118.7 

Siaiic dielectric COR"I~ (erperimenc 3.0-3.5)' 
e d L  1) 2.33 2.24 3.09 2.02 2.19 
EU(2. 2) 2.45 3.45 4.58 1.83 3.35 
4d3. 3) 2.43 3.16 5.78 1.82 2.40 

From [27]. 

The first clear result of the fitting exercise is that on comparing potentials AI, A2 and 
A3, we find that the pair-potential model (A3) is very poor in describing the B-O-B bond 
angles and the cell volume (and hence density), as discussed in section 4. It is interesting 
to note that the fitted CLB-O force constant is zero both for potential AI and A2. This may 
mean that the effects of the 0-B-O interactions can be mimicked by the 0-0 interactions, 
while lhe B 4 B  interactions cannot easily be replaced with the B-B interactions. It is also 
of considerable interest that the potentials which are fitted only using the data of Bz03-I 
can reproduce the structure of B203-I1 well. 

Turning now to the question of the atomic charges, the experimental structure is 
relatively insensitive to their value if we allow the short-range potentials to be refitted: 
in contrast the elastic constants and the bulk modulus are strongly dependent upon the 
values assigned to these charges. Generally speaking, the more ionic models have the 
larger bulk moduli. When the bulk modulus (30-50 GPa for BzOs-I and 100-130 GPa for 
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B203-11) calculated in the companion ab initio study of BzO3 12, 31 are taken into account, 
an effective charge of 40% or less of the formal value may be appropriate. Ionicities of this 
magnitude also agree with the Mulliken charge ( q B  -+1.2) calculated by Takada [Z]. 

We also note that for the rigid ion model, the calculated static dielectric constants are 
smaller than the experimental values (3 . s3 .5)  [U] as expected. Use of the shell model 
may overcome such problems. 

Tablc 7. Fitted patentids (BI ,  Cl, C2) based on both erystd smclures and ab iniiio data 

Potential sets 

Parameters B I  CI c 2  

Charge 
q(B) + 1.2 t 1.2 +0.9 
dO) -0.8 -0.8 -0.6 .. . 

Mome porenlidfbr B - 0  
for wofnld oxygen orom 0 2  

D (eV) 2.322 1.84 1.79 
B (A-') 2.5 2.7 2.7 
PI1 (A) 1.35 I .35 I .35 

for  rhreefidd oqgen nlom 0 3  
D (ev)  2.322 098 0.96 
B V-') 2.5 2.7 2.7 
pu (A) 1.35 1.475 1.475 

Buckingham polenlialfi,r 0-0 
A (eV) for 01-02 2231.5 1990.8 485.8 
A (eV) for 0 2 - 0 3  2231.5 1650.9 422.9 
A (eV) for 03-03 2231.5 692.3 193.4 
P (A) 0.30 0.30 0.35 
c ( e v  A6) 0.0 0.0 0.0 

Buckingham polenriolfirr B-B 
A (ev)  0 323.1 0.0 
P ( A )  0.30 0.30 0.35 

0.0 0.0 0.0 

k (eV rad-') 2.0 0 3.24 

k (eV rad-2) 2.0 1.66 1.94 
jufouljidd boron omm 

for lheefidd oxygen atom 

four-body lerm for 0-B4-0 
k (eV r3d-l) 5.58 4.22 4.53 

- k (eV rat-') 0.02 - 

6.1.2. Fitting to both B~03-1 and B203-1I structures. Next, in order to reproduce better 
the structures of both BZ03-I and BzO3-11, simultaneous fitting is performed. For B~03-I ,  
twelve structural configurations (lattice constants are varied) and eleven ab initio data (see 
table Al)  are used for the structural stability conditions and as components of the cost 
function respectively; while for BzOy-iI, we use twelve structural configurations and eleven 
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ab initio data. The fitted potential (potential B1) and the resulting static lattice simulations 
are shown in tables 7-9. 

Table S. Static lattice simulation of the structure and properties of B203-I using fitted potentials 
@ I .  C1, C2). Experimental data [24] are given in brackets. 

Potential sets 

BI Cl c2 

(i) Calculated latrice energies in experimental ( E l )  md energyminimized (EZ) structures (eVBz03) 
El -44.74 -42.05 -27.16 
E2 -44.83 -42.1 I -27.24 

(iiJ Energy-minimized stmcture (percentape error with respect to experimentnl vaiuel: unit-cell volume (w) ,  
lattice constants (a, b. E )  (%J 
U + 0.30 + 1.87 + 1.32 
(1 

b 
e 

Bond lengrh (AJ 
BI-01 
B1-02 
BI-03 
B2-01 
82-02 
B2-03 

01-B1-02 
01-BI-03 
02-BI-03 
01-B2-02 
81-01-82 
B1-02-BZ 

Bond angle (deg) 

+ 0.89 
+ 0.89 
- I .47 

1.396 
1.358 
1.365 
1.358 
1.396 
1.365 

120.3 
116.6 
122.7 
120.3 
131.9 
131.9 

+ 0.87 
+ 0.87 
f0.12 

1.409 
1,346 
1.362 
1.346 
1.409 
1.362 

120.1 
115.3 
124.0 
120.1 
131.4 
131.4 

+ 0.83 
+ 0.83 
-0.34 

1.398 
1.367 
1.364 
1.367 
1.398 
1,364 

120.4 
116.1 
121.7 
120.4 
130.7 
130.7 

ut) Pmperties for energym'nimized struclum 
lmtk consranr (GPa) 

223.4 191.6 138.6 
L- 

E U .  I )  

(1,404) 
(1.366) 
(1.337) 
(1.336) 
(1.400) 
(1.384) 

(1 19.0) 
(1 14.7) 
1126.1) 
i iz 1 .s j 
(130.5) . .  
(128.3) 

E ( l ;  2) 58.9 52.4 38.5 
Bulk modnlus (CPnJ 

113.8 98.8 11.9 
Srnric dielectric constant (experiment: 3.0-3.5)' 

E O ( I .  I )  1 .44 1.60 1.40 
eo(2. 2) 1.44 1.60 1.40 
Ed3. 3) 213 2.38 2.59 

' From D71. 

We find that potential B1 can reproduce both crystal structures very well. The 
simultaneous fitting reproduces both StructureS equally well. However, two problems still 
remain. ?he first is that the difference in the B-O bond lengths in the B203-II structure is 
not well reproduced. As discussed by Takada 121, the coordination numbers around 01 and 
0 2  are two and three which is thought to be the main reason for differences in the B-O 
bond lengths. The second problem is that the lattice energy of Bzo3-E is sometimes lower 
or almost the same as that of B2O3-I. This tendency becomes stronger as the ionic charges 
are reduced and is clearly a substantial problem. 

In order to overcome these difficulties, we have further developed our approach. We 
recall from the companion ab initio study [2]  of Bz03 that the B-O bond strength changes 
according to its coordination number. Moreover, in the case of Bz03, the coordination 
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Table 9. Static lartice simulation of ihe StNCUIE and pmperties of B203-11 using Iitted potentials 
(BI. CI, a). Experimental dm [25] are given in brackets. 

Potenrial Seis 

BI CI a 
(ij Calculated lanice energies in experirnenlal ( E l )  and energy-minimized (€2) structures (eV/BzO,) 

El -44.50 -40.70 -25.77 
E2 -44.73 -40.84 -25.84 

lanice constm~s fo, b. c) (Cj " + 1.52 -2.53 -1.96 
a + 0.09 -0.27 -0.79 
b + 0.09 -0.27 -0.79 
C + 0.75 -0.49 t 0.42 

81-01 1.419 1.346 1.367 (I .373) 
B 1-02 1.449 1.476 1.489 ( I  ,506) 
BI-02' 1.469 1.502 1.501 ( I  ,508) 
61-02" 1.597 1.564 1.543 ( I  .5 12) 

(iij Energy-minimized ,swuctwe (percentage ern,? with respect to experimental valuej: unit-cell volume (v j ,  

Bond length CA, 

Bond nngle (degj 
0 I-B 1-02 105.8 110.6 109.5 (I  10.2) 
0 I-B 1-02' 113.5 117.9 116.1 (I 15.8) 
01-81-02'' 112.3 115.2 114.3 (113.1) 
02-81-02' 109.3 107.5 108.3 (107.4) 
BI-01-BI 133.5 134.1 133.2 (138.6) 
BI-OZ-BI 118.8 120.0 119.7 (118.7) 

(iii) Proper~imftr energyminimized .strucmrc.r 
€la& conrtnnt (GPaj 

€(I ,  1) 531 4 577.4 403.2 
E(1,  2) -3.0 83.2 65.7 

Bulk modulus (GPuJ 
175.1 248.0 178.2 

Slarie dielectric cowt(uII (experiment: 3.0-3.51' 
E d I .  I )  1.67 1.59 1.32 
ed2. 2) 1.56 I .65 1.34 
EU(3. 3) 1.57 I .68 1.40 

* From [27], 

number around the oxygen atoms seems to be especially important. Therefore, different 
Morse and Buckingham potentials are assigned for twofold- and threefold-coordinated 
oxygen. Next, in order to keep the energy of  B203-I lower than that of BzOj-II, one 
inequality condition: 

En201-i < En2o3-it (22) 
is added during the fitting. 

The fitted potentials (C1 and CZ) and the resulting static lattice simulations are again 
given in tables 7-9. Potential CI is fitted with charges corresponding to 40% ionicity, while 
that for C2 was 30%. Both potentials reproduce not only the lattice parameters but also 
the bond lengths and bond angles in the two crystals, while keeping the energy of B20~-I  
lower than that of B203-11. 

6.1.3. LP ptting potentials based on periodic HF energy surfaces: summary. We have 
succeeded in deriving several sets of potentials which can reproduce both crystal structures 



8676 A Takada et a1 

of B203. In particular, we find that a partial charge model with a B-O Morse potential and a 
B-0-B bond-bending, three-body term can reproduce both crystal structures accurately. The 
comparison of the lattice energies of the two structures suggests that different short-range 
potentials must be defined to reproduce the order of their energies. and the potential sets (Cl 
and C2) in which parameters depend on the coordination number around the oxygen atoms 
have consequently been developed. These potentials can reproduce not only the structures 
but also the order of the lattice energies of the two phases. They will be applied to MD 
simulations of vitreous B203 in subsequent papers. 

6.2. Potentials derived from molecular clusrers and crystals 

6.2.1. Potentials derived only from molecular clusters. Can potential energy surfaces based 
on molecular systems enjoy similar success to those based on periodic structures? 

For the Si02 system, several sets of interatomic potentials derived from ab initio 
calculations on related molecular clusters have been applied to crystallinc and vitreous 
states. In the B203 system, Gupta and Tossell [31, 321, Gibbs et a1 [33] and Zhang et a1 
[34] showed that molecular clusters mimic the geometry of polyanions in borate minerals. 
A detailed study of molecular energy surfaces is therefore reported in this section. 

83B03 H4B205 

H 

838306 

Figure 4. Moleculx clusters used for deriving potenrials 

To this end we have therefore calculated several potential energy surfaces for molecular 
clusters, by performing ab initio calculations on the monomer HBO3, the dimer h B z O 5  and 
the trimer H3B3O6 using a 6-31G* basis set with the GAUSSIAN-90 program [35]. The 
schematic diagrams of the three structures are shown in figure 4. For HB03, we optimized 
with C I  symmetry; after optimization, the B-0 bond lengths (whose optimized value is 
1.374 8,) are varied from 1.0 A to 2.0 8, and the 0-B-O bond angles are varied from 
105" to 135". For H.+BzOs, the structure is optimized with Cz symmetry; following the 
optimization. the B-O-B bond angle (the optimized value of which is 134.5") is varied 
from 120" to 150". The structure of H3B3O6 is optimized subject to CL symmetry and the 
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0-B-O and the B-O-B angles remain fixed at 120”. The optimized B-O bond length is 
1.384 8, for in-ring bonds and 1.358 A for out-of-ring bonds. 

There are several assumptions made in deriving the resulting potentials. In order to keep 
charge neutrality, the charge of the hydrogen atom (qH) is varied, with the charges of boron 
atom ( 4 s )  and oxygen ( 9 0 )  being changed in order to satisfy the following conditions: 

q B  3qX 40 = -2qH. 

For the hydrogen atoms we only allow the point charge (qH) to vary. The interactions 
between the oxygen and hydrogen atoms in the OH group are assumed to be unchanged, 
because the 0-H bond lengths remain fixed in the ab initio calculations. 

We employ a general least-square fitting procedure of interatomic potential parameters 
to the ab initio energy surfaces, varying the charge qH.  We used partial charge models 
with Buckingham potentials for the B-O and 0-0 interactions and bond-bending, three- 
body t e m  for the 0-B-0 and B-O-B interactions. A total of eight parameters ( A ,  p ,  
and C parameters for the B-O and 0-0 interactions; bond-bending force constants for the 
0-B-O and B-O-B interactions), but not the charges were fitted. In order to check the 
influences of the range of ab initio data employed in the fitting procedures, two potentials 
are fitted. Potentials DI and D2 are fitted using respectively the ‘long-range’ B-0 data, 
i.e. (1.0 8, e R(B-0) c 2.0 8,) and the ’short-range’ B-0 data, i.e. (1.15 8, c R(B- 
0) < 1.55 A). The ‘short-range’ B-O data are of course present in the ‘long-range’ B-O 
data. The fitted potentials are given in table 10. 

Table 10. Fitted potenuals (DI,  D2) obtained using ob inizio data on molecular clusters. 

Parameter Potential DI Potential D2 

Ch0”h.e 
y(B) + 1 . 1 1  + 1 . 1 1  
Y(0) -0.74 -0.74 

Buckmghom porenduljor 0-0 
A (eV) 1919.8 8207.0 

Three-body Iermsfor 0-B-0  f&I = 1”) 
and B-O-B (&I = 120”) 

k(0-B-O)  0.0004 1.675 
k(B-0-E) 1.625 1.251 

When used in modelling the B20,-I crystal, both potentials D1 or D2 result in an 
expansion of the cell volume by 35% or 17%. Several other attempts were made to fit the 
data (for example, using a Morse potential or with different charges), but none of them could 
reproduce the BzO3 structure well. It appears that the effects of the crystalline environments 
are not simply expressed by the addition of the electrostatic Madelung potential; and the 
results may suggest moreover that the short-range terms must be varied in line with the 
change of charge distribution due to the crystalline environments. A more detailed discussion 
is given in the following section. 
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Table 11. Input data and conditions used for LP fitting. For Ihe monomer, dimer and trimer, 
Rls-0) andB[o-s-o).B[s-oa,-,-B), R[.e-oa,l and R[n-oms,) van’cd:forcrystals,a, b , c , a . 8 . y  
varied. R ,  0 and a, b. c, 01.8. y represent bond lengths, angles and lattice constants. Ob, and 
On* represent non-bridging and bridging oxygen atoms. (Note that Ihe energies are calculated 
using the standard Hartree-Fock procedures described in Ihe text and are available from the 
auIhoIs on request.) 

Component of cost function 
Derived from ab inirio dam 

Structural stability condition 
Derived from slructural dam 

Exp = experimentdly 
obsewed structu~e 
BzO3-I1 mstal 

E = E(a,b.c ,n .B,r)  

Exp = experimentally 
observed structure 

(IO structural configurations 
used for fitting) 
E(1.374, 120). E(1.3. 120). 
E(1.35, 120). E(1.40. 1201, 
E(1.45, 120). E(1.50, 120). 
E(1.374. 110). E(1.374, 115). 
E(1.374. l a ) .  E(1.374. 130) 

0 structural configuralions 

E(150) 

(no data used) 

(9 suuctural configurations 
used for fitting) 

E(=. b. c : +4%). E(a, b. c : t2%) ,  
E(=. b. e : -4%). E(n. b. c : -2%). 
E(e : +3%). € ( e  : -2%). 
E(a : t245). E(a : -1%) 

(no data used) 

E ( W .  

(2 mctura l  configurations 
used for finind 
E(1.384. IZOj> E(1.374. 120) 
E(1.364. 120) > E(1.374. 120) 

(2 structural configurations 
used for fitting) 
E(139.5) > E(134.5) 
E(129.5) > E(134.5) 

(4 structural configurations 
used for fining) 
E(1.374. 1.358) > E(1.384, 1.358) 
E(1.364. 1.358) > E(1.384, 1,358) 
E(1.384. 1.368) > E(1.384. 1.358) 
E(1.384. 1.348) > E(1.384, 1.358) 
(12 struclural configurations 
used for fining) 
E(= : t I%or -  1%) > E(exp) 
E(b : +l%or - 1%) > E(& 
E(c : t l%or - I%) z E(exp) 
E(a : t2.5‘01- 25)O > E(exp) 
E@ : +2.S0or - 2.5)’ > E(exp) 
E(y : t2.5’01- 2.5)” > E(exp) 
(12 structural configurations 
used for fitting) 
E ( o : t l % o r - l % ) > E ( e x p )  
E ( b : + I % o r - l % ) >  E(exp)  
E(c : t l % o r  - 1%) > E(exp) 
E(a : t 2 S 0 0 r  - 2.5)” > E(exp) 
E(@ : t2.5’or - 2.5)’ > E ( e x p )  
E ( y  : t2.5’or - 2.5)’ =- E(exp) 

6.2.2. Potervials derii’ed from both crystals and molecular clusters. In the previous section, 
the simple application of the potentials derived from the ab initio data on the molecular 
clusters failed to reproduce the Bz03-I structure. Is there any common potential transferable 
for both crystal stmctures and molecular clusters? 

To investigate this problem, several simultaneous LP fitting calculations were performed 
using both the crystal structural and the molecular cluster data. GAUSSIAN-derived and 
CRYSTAL-derived ab initio data were used for molecular clusters and crystals respectively. 
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?able 12. S u m w  of conditions used in LP fitting for potentials El to E7. @ indicates data 
used during LP fitting. 

8679 

Fitted potential sets 

Parameters El E2 E3 PA E5 E5 E7 

Charge 
d B )  + 1 . 2 + 1 . 2 + 1 . 2 t 0 . 6 + 0 . 6 + 0 . 6 + 0 . 6  
4(0) -0.8 -0.8 -0.8 -0.4 -0.4 -0.4 -0.4 
Monumer 
ab initio data r @ @  @ @  

Dimer 
ab inilro data @ @ @  @ e  

TWlle, 

stability condition e @ e  

stability condition e @ e  

Stability condition @ @ @  
B* 03.1 erystul 
ab inirio data @ @ @ 
Stability condition @ @ @ @  @ 

B2 03-11 cfystal 
Stability condition @ @ @ @  

Table 13. LP fitted potentids obtained using molecular data and crystal data (EI-E7). 

Fitted potential sets 

Parameter El E2 E3 FA Ei E6 E7 

Charge 
q(B) t1.2 + I 2  +1.2 +0.6 t 0 . 6  t0.6 i-0.6 
P(0) -0.8 -0.8 -0.8 -0.4 -0.4 -0.4 -0.4 

D p v )  2.48 2.53 4.05 2.65 3.90 4.28 4.09 
Morse potenriolfiw B-0 

B (A-') 1.7 2.7 2.7 2.9 2.7 2.7 2.8 
hl (A) 1.35 1.35 1.30 1.28 1.28 1.28 1.28 

Buckinghrrm potenrialfor 0-0 
A CtV) 2250 2286 1679 1632 2245 2371 2447 
P (A) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 
c (ev A6) 0 0 0 0 0.1 37.1 42.0 

A (eV) 0 0 440.8 0 0 IN8 1290 
P (A) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

Three-body term for 0-8-0 (k l ,  8) = 120°fiu threefold, b. 81 = 109.47' forfowfdd) 

Buckingham potentialfor 8-8 

c (ev A') o 0 0 0 0 0 0 

kg (eV 0 0 0.93 1.09 0 0.08 0.01 
k4 (eV rad-') 5.00 1.78 - 7.47 17.79 - I .04 

Three-body rermfiw E-0-B (4, = 120') 
k (eV rad-2) 1.37 4.47 0.50 0.14 0.02 0.88 I .04 

LP fitting is very suitable for this sort of study, because the conditions for molecular clusters 
and crystals are dealt with independently and equally. The input data and conditions used 
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for the LP fitting are shown in tables 11 and 12. A total of seven fitting calculations were 
performed which differ in the data that were used; the fitted potentials and the resulting 
static lattice simulations are shown in tables 13 and 14. 

Table 14. Static lattice simulation using the fitted potentials (EI-E7). #indicates a calculated 
value which deviates considerably from experiment. * indicates an averaged bond angle, ?# 
indicates a result where one angle is much larger and the other is much smaller lhan that of 
experiment. 

Potential se& for static lattice simulation 
(Expe"mentd 

Parameter El E2 E3 E4 E5 E6 E7 data) 

Monomer bond lengrh R CA, 
R(B-0) 1.374 1.464# 1,374 1.384 1.394 1.374 1.374 (1.174) 

Dimer bond lengrh R (AJ ond brindmxle 0 fdegl 
Ris-o,..> 1.45% 1.45% 1.365 1.395 1.385 1.365 1,365 (1.365) . ", . 
Ois-o,,,-m 131.5 127.5 132.5 132.5 1 4 4 3  132.5 133.5 (134.5) 

Trimer bond lengrhr R(s-o,.) ond R(s-o.,) 
R(8.oi,,) l.459# 1.455# 1.374 1,384 1.384 1.394 1.394 (1.384) 
R ~ B - - o . ~ . ~  1,458# 1.458# 1.368 1.388 1.398 1.368 1.368 (1.358) .~ 

Bz0,d  crystal lurrirc cnergy (eV/BzOlJ. relorive cell volume IO exprimenrol vulue (%I, bond ungle E(s-o-a) 
Energy -46.21 -46.1 I -57.69 -20.38 -26.60 -29.76 -28.39 
Cell volume + 9.W t 0.9 -25.8# + 11.0# -5.29 -4.46 + 0.93 
e(8-o.8) 140.~ 132.4 126.7 138.58 ?# 1363 138,5# (130.0') 

Energy -46.31 -46.16 -59.87 -20.11 -26.48 -30.44 -28.64 
Cellvolume +2.1 +0.4 -15.1# -1.55 +OS0 -2.31 -1.27 

BzOj-U crystal lorrice energy feV/BzO,), relarive cell volume to experi,nenenrd v d u e  (%) 

Several features of the calculated results deserve attention. First we note that before 
investigating the models based on 40% and 20% ionicity (potentials E1-W). several other 
values for the ionic charges were tested. In general, the models with higher ionicity (>30%) 
are good a1 reproducing the crystal structures, while the lower ionicity models ( d o % )  
reproduce the molecular smctures well. 40% ionicity (qs = +1.2, qo = -0.8) is close to 
the Mulliken charge (48 = +1.1) in B203-I calculated by the CRYSTAL codes (ST03-21G 
basis set), and 20% ionicity (4s = +0,6, qo = -0.4) is close to that (4s = f0.65) in 
HB03 calculated by the GAUSSIAN-90 code (MPU6-311G**). The aim of the present 
fitting procedure is to explore the possibility of a common potential for both crystals and 
molecules; so a common charge value is used in the LP fitting, although the crystal is clearly 
more ionic than the molecules. 

We found, not surprisingly in view of the above comments, that when all the conditions 
are used at the samc time in the LP fitting, no feasible solution existed. Therefore, several 
combinations of conditions are used in the LP fitting. 

Potentials E3 and E6 refer to the case where only molecular ab inilio data (obtained 
from the GAUSSIAN calculations) and the stability conditions of the molecules are used 
without any data relating to the crystals. It is interesting to note that the D parameter 
in the B-O Morse potential is larger than those of the other cases, which leads to the 
smaller cell volume in B203-I. We also find that the experimental B-O bond lengths in thc 
crystalline states are almost the same as those calculated from the ab initio simulations for 
the molecules (see tables 1 1  and 15). Thus in the molecules, although there are no crystal 
effects (due to long-range electrostatic forces), the bond lengths are close to those in the 
crystalline state, but the B-O covalent bonding as reprcsented by the Morse term becomes 
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Table 15. B - 0  bond distances in borate minerals. 

8-0 (A) B-O (A) 
Compound Tnangular BO1 Tevahedral BO4 Ref e re n c e 

Boron trioxide 
BzOi-I 1.337. 1.366, 1.404 

1.336, 1.384. 1.401 
B203-11 

Onhoboric acid 
B(OH)1 1.356, 1.365. 1.365 

1.353. 1.359. 1.365 
Memboric acid 

HBOl-I 
1.345, 1.371. 1.386 
1.356, 1.366, 1.378 

HBO2-11 

HBO,-Ill 
1.373. 1,377. 
1.391. 1.353, 
1.372, 1.372 Wring) 
1.351. 1367, 1.347 (our-of-ring) 

[%I 

1.373, 1.506, 1.507. 1.512 PSI 

[36, 371 

1381 

1.433. 1.451, 1.452. 1.553 

1.436, 1.465, 1.482. 1.505 
1391 

140. 411 

stronger than in the crystals. 
Potentials El and E4 refer to the case where the ab initio data on the molecules 

(GAUSSIAN-derived data) are used as components of the cost function, while the stability 
conditions of the crysrals are imposed. The fitted results give a smaller D value in the B - 0  
Morse potential and a larger force constant (K) of the B-O-B interactions, compared with 
those of potentials E3 and E6. The smaller D value suggests that in the crystalline states 
the effects of the crystal field replace-a component of the B - 0  attractive terms described in 
terms of covalence in the molecular species. A possible reason for the large K value may 
be that in the crystal the larger effective charges result in an increased repulsion between the 
B atoms. which is not modelled directly owing to the use of a common set of charges for 
the molecules and crystals: this error in the Coulomb term is compensated by the increase 
in the bond-bending interaction. 

Potentials E2 and E5 show the case where only ab inirio data (CRYSTAL-derived data) 
and the structural stability conditions of the crystals are used. The use of too many conditions 
for LP fitting occasionally gave no feasible solution. Therefore, the number of conditions 
used for LP fitting was reduced, compared with that in our earlier potentials (BI,  C1 and 
C2). As for potential E2, both crystal structures are reproduced very well, in contrast to the 
potential based on molecular calculations which result in long B-0 bond lengths. Unlike 
the case of potentials E3 and E6, the D parameter in the B - 0  Morse potential has a small 
value corresponding to the crystalline slate. We note that potential E5 fails to reproduce 
the structure of BlOi-I: the relaxed structure, using this potential. has fourfold coordination 
around the boron atoms. In general, the smaller the value of the charge used, the more 
difficult becomes the simultaneous fitting of Bz03-I and B203-I1 and low-charge models 
cannot reproduce both structures with a single set of parameters. A likely explanation of 
the latter feature is that low-charge models cannot compensate the difference between the 
Madelung energies of the two polymorphs. 
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Potential E7 was derived using both molecular and crystal ab initio data (i.e. from both 
GAUSSIAN and CRYSTAL calculations) for BzO3-I. There is no feasible solution for 40% 
or higher charge models, or in the case where the data for B203-H is added. However, this 
potential reproduces the B-O bond lengths for the three molecules and the cell volumes in 
both crystals reasonably with the same set of parameters, although the B-O-B bond angle 
in B ~ 0 3 - I  shows appreciable error. It suggests that it is difficult to reproduce both molecular 
and crystalline structures precisely with a common potential, but that the 20% charge model 
can reproduce them both to some extent. 

There are two problems remaining in applying these potentials to MD simulations. One 
is the large C value in the 0-0 interactions fitted in the 20% ionicity model. It generates 
too large an attractive force when the 0-0 distance becomes short. The other is the energy 
difference between BzO3-I and B203-11. In the case of potentials El, E2, E3, E6 and E7, 
the energy of Bz03-I1 is lower than that of B~03- I .  During the LP fitting, one inequality 
condition EB~O+ < E & ~ , - J J  can be added, but it is very difficult to find an acceptable 
solution for the smaller charge models (20% or less) which still reproduces both structures. 
We proceed to MD simulations using these and better potentials in our subsequent study. 

It appears therefore to be difficult to find transferable potential models that reproduce the 
two crystal structures and the three molecular structures with a common set of parameters. 
Even the best model often fails to reproduce the order of the lattice energies. When compared 
with the ‘molecular’ potentials, the ‘crystalline’ potentials result in higher charge models, 
with the B-0 attractive terms being weaker and the force constant of the B-O-B interactions 
being larger. 

Finally, it is interesting to note that although the bond lengths and bond angles are very 
similar for the molecular and the crystalline states, the potentials parameters are different 
reflecting the differing degrees of ionicity in molecules and crystals. 

6.3. Potentials for B203: summary 

We have found that it is essential to employ a partial charge model with a B-O Morse 
potential and a B-0-B bond-bending, three-body term in order to reproduce both crystal 
structures accurately. Moreover, to reproduce the order of energies in different phases, new 
potentials (C1 and C2), which depend on the coordination number around the oxygen atoms 
have been developed. 

When we compare the ‘molecular’ potentials (e.g. E3 or E6) with the ‘crystalline’ 
potentials (e.g. A, B, C, E2 or E5), we have found that it is possible to fit molecular or 
crystal data separately, but that the potentials are not transferable. When we attempt to 
derive common potentials (El, EA or E7), by fitting both to molecular and crystalline data 
simultaneously, these do not reproduce both the crystal structures and the three molecular 
structures. These results must cast considerable doubt on the use of calculations on small 
molecules in modelling the properties of ionic or semi-ionic solids. 

We will now use the more successful of our potentials to investigate the stability of 
various polymorphic structures of BzO,. 

7. ‘Computer synthesis’ of new possible polymorphs and possible structural units of 
vitreous B 2 0 ~  

We now investigate whether it is possible to construct polymorphs based on a variety 
of boroxol ring structures, our motivation being the importance of the boroxol ring i n  
amorphous B203, a point to which we return in the next paper. We will report several 
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computer experiments which were performed in order to explore new structures for B203. 
The starting point was to identify those structures among the borate crystals that have boroxol 
ring content. We have discussed elsewhere [Z] that the structure of B203  considerably 
differs from the borate structures which have a high content of modifier oxides; and as the 
content of modifier oxides increases, a three-dimensional type of infinite network changes 
into an assembly of isolated structural units with non-bridging oxygen atoms. Therefore, 
it is desirable to start from the borate structure with the least content of modifier oxides. 
Caesium enneaborate [42] CszO, 9B201 is a good first candidate. This structure has two 
three-dimensional interlocking, twin networks based on B-O bonds (see figure 5). The 
topology is such that it is not possible to pass from one network to the other. The network 
comprises two kinds of basic unit (with a ratio 1:2): a triborate group (containing a six- 
membered ring, but with one of the boron atoms coordinated tetrahedrally with oxygen 
atoms) and a boroxol group. As noted above, the vitreous structure of B203 is claimed 
to have a high fraction of boroxol rings, and a structure such as that of metaboric acid 
HBOz-III [41], which comprises only boroxol rings, with only a small influence due to 
HzO, is another good starting structure. Its structure is hydrogen bonded with sheets of 
trimeric HBOz molecules (six-membered rings) loosely stacked to form a mica-like plate 
crystal in the orthorhombic system [41] as shown in figure 6. 

b \ O l Z I  

Figure 5. Crystal structures of CszO. 98203 1421. 

b 

0 a 

Figure 6. Crystal structure of HBOl-I11 1411, 

7.1. Construction of new polymorphs from HBOl-IIl 

It is necessary first to ‘dehydrate’ HBOi-III (computationally), for which there are several 
possible routes. The simplest involves rearrangement of some of the hydrogen bonding 
between the layers. Two of the three hydroxyl groups, -0(3)H(3) and -0(6)H(6), are 
almost directly above and below the BO? groups of the boron atoms B(1) and B(2), while 
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the remaining -0( l)H( I )  group interacts to a lesser degree with its centre-related counterpart 
[43] (see figure 6). Therefore firstly, all the O(1) atoms are removed with all the H(I) 
hydrogen atoms. Next, we extract half of the O(3) and O(6) atoms, and all the H(3) and 
H(6) atoms. The O(3) or O(6) atoms must be removed alternately in the vertical direction 
so that the bonding of B(1)-0(6) or B(2t0(3)  can be generated. 

After the removal of the hydrogen and oxygen atoms, the remaining O(3) and O(6) 
atoms are moved to the mid-point between the two neighbouring boron atoms to which we 
may expect them to bond. Next, static lattice simulations are performed using potential C2, 
which was shown to be the best potential set for crystalline B203 in our preceding section. 
To drive the formation of the new B-O bonds, the B-0 Morse D parameter is set initially 
to be five times its normal value and is restored to the original value after the new bonds 
are established in the structure. 

The resulting completely relaxed structure (Bz03-a) has the following features: its unit 
cell includes six molecules; its lattice parameters are a = 13.63 A. b = 5.73 A, c = 7.79 A, 
(Y = 86.0", ,!J = 98.7", y = 99.8"; and its density is 1.17 g It comprises 100% 
boroxol rings with no independent BO3 triangles. It is interesting to note three further 
points. The first is that there is a strong resemblance to the vitreous structure in so far 
as the average B-O bond length is 1.36 A and the average B-O-B bond angle of the 
boroxol rings is 128". Secondly, however, we find that the density of the new structure 
is much lower than that of the glass (1.84 g cm-?), in line with previous claims that the 
100% boroxol model cannot reproduce the glass density [43, 441. The third point is that 
although the original structure is layered, the final structure turns out to be close to the 
two three-dimensional interlocking type of networks, found in the crystal structure of CszO 
9B203. 

In order to get a higher density as measured experimentally, we made a final change 
to this structure: half of the B306 units are replaced with a BO3 unit. After this change, 
static lattice simulations were performed using the potential C2 in the same manner as for 
B20,-a. 

The resulting completely relaxed structure of (B203-b) is as follows: its unit cell includes 
four molecules; its lattice parameters are a = 10.22 A, b = 5.71 A, c = 6.13 A, (Y = 78.2", 
,!J = 87.3", y = 94.6"; and its density is 1.33 g cm-3. It comprises 100% boroxol rings with 
no independent BO3 triangles. All the B-O bond lengths and bond angles are almost same 
as Bz03-a, while the dcnsity increases by 14% compared with that for Bz03-a. The results 
show that the final density is strongly affected by the intermediate-range structure Moreover, 
it still appears difficult to construct a crystal structure that comprises 100% boroxol rings 
and has the experimental glass density. 

7.2. Construction of new polymorphs from Cs20.9B203 

The first problem here is again how lo extract the Cs20 from the original crystal structure; 
and we must check whether reasonable new B-0 bonded structures can be generated, after 
the oxygen atoms have been extracted. One of the obvious routes is to extract half of the 
O(3) atoms so that the 0(3) -O(5 ' )  bonding is disconnected and new B(2)-0(3) bonding 
is generated so that the network is reconnected (see figure 5) .  After these manipulations. 
static lattice simulations are performed using potential C2 in the same way as with B20.3-a. 

The completely relaxed structure (BzO3-c) is as follows: its unit cell includes eighteen 
molecules; its lattice parameters are a = 7.99 A, b = 10.05 A, c = 16.20 A, (Y = 94.4". 
B = 90.0", y = 90.0"; and its density is 1.60 g cm-?, which is only 15% smaller than that 
of B203 glass. The ratio of B306 units to BO3 units is 2 : 3, i.e. 2/3 of the boron a t o m  are 
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in boroxol rings. The basic structure comprises interlocking three-dimensional networks as 
in the structure of CszO. 99203, but one BOn unit connects two neighbouring networks. In 
the same network, three BO, units are connected in series. One BO3 is connected with two 
B306 units, while the other two units are connected with one Bj06  unit, as shown in figure 
7. The average B-0 bond length is 1.36 A and the average B-0-B bond angle outside the 
boroxol rings is 128". 

Figum 7. Connection of Blob units with BO1 mi[$ 
used in generating BlOg-c 

Figure 8. Connection of BsOa wi l l  with BO1 units 
used in genersting B203-d. 

In order to get a density as high as the experimental vitreous density, a final change 
was made to this structure: two BO3 units, (B(2), 0(3 ) ,  0(4), OW)) and (B(2'), 0(8), 
0(4'), O(5'))  were replaced with one BO3 unit simply by topological manipulations, after 
which static lattice simulations were performed using potential C2 in the same manner as 
the case of B203-a. The completely relaxed structure (BzOl-d) is as follows: its unit cell 
includes sixteen molecules: its lattice parameters are a = 7.94 A. b = 8.58 A, c = 16.55 & 
01 = 96.1", @ = 85.0". y = 88.0": and its density is 1.72 g which is only 6.9% 
smaller than that of B2O3 glass. 

The ratio of Bo06 units to BO3 units is 1 : 1, i.e. 75% of the boron atoms are in boroxol 
rings. The basic structure comprises two interlocking three-dimensional networks without 
any connection between them. which is the same as in CszO. 9B203. Two BO3 units are 
connected in series and each BOs unit is connected with two B3O6 units. The manner of 
connection of the BOn units is shown in figure 8, 

7.3. New polymorphs: discussion and s u m m y  

It is interesting to note that all four new structures have almost the same B-0 bond lengths 
and B-O-B bond angles as those observed in BzOs-I and vitreous B203. Although there 
is no known crystal structure containing boroxol rings, the calculated lattice energies of 
these four structures are lower than that of B20s-I, and even if they are metastable at finite 
temperatures, it seems possible that they are candidates for a new polymorph. 

On the other hand, for vitreous B ~ 0 3 ,  it has been claimed that there is no structure 
model with the experimental density and a high fraction of boron atoms in boroxol rings 
without layered rings. Crystals constructed in the manner of the layer model proposed 
by Bell and Carnevale [45] were therefore generated. Six-membered rings, with adjacent 
sheets overlapping but rotated by nj3 relative to each other, were hexagonally arranged, 
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Figure 9. Overlapping B306 boroxol ring 
models in adjacent layers of network. rclnrivcly 
rotxed by n/S rad; ‘h’ indicores the inrerlayer 
diswnce 1451. 

as shown in figure 9. The static lattice simulations were performed on these structures, 
carefully varying the initial interlayer distances. However, the calculated distances between 
the layers became longer and longcr, and a stable structure could not be obtained. Our 
potential model shows that boric oxide does not favour a layer structure. 

Structures Bz03-d as well as BzOl-c could be structural units in vitreous B2O3. They 
have as much as a 75% fraction of boron atoms in boroxol rings and this figure agrees with 
that estimated for the vitreous material by Jellison et al [46] and Johnson et al [47]. In 
addition they not only have reasonable B-0 bond lengths and B-O-B bond angles, but they 
also have a reasonable density, although it is still smaller than that observed for vitreous 
B20B. Thirdly we note that the structure has a three-dimensional network without layered 
rings. The most realistic structure for vitreous B203 is thought to bc that i n  which Bz0.j-c 
and B203-d are randomly connected and also some B3Ob units are replaced with BO? units 
in order to reproduce the experimental density. The most characteristic feature of such 
structures is that the three-dimensional networks are interlocking. and two or three € 3 0 3  
units are the main connecting parts between B306 units. The new structures constmctcd 
in this paper will be compared with the vitreous structures obtained employing the MD 
method in the subsequent paper. 

7.4. Lattice dynamics simulation 

As the final component of this study we report the analysis of the vibrational properties of 
the new structures. Our investigation is particularly motivated by the observation that the 
large peak in the Raman spectrum of Bz03 glass at 806 cm-’ is one of the strongest pieces 
of evidence for the existence of boroxol rings. 

Verhoef and den Hartog 148, 491 performed MD simulations of B20) glass. Although 
their structures comprised onIy BO1 triangles without boroxol groups, they concluded that 
the vibrational modes of adjacent BO, triangles are decoupled sufficiently and a local 
breathing mode can occur; indeed the peak at 806 cm-’ in the experimental Raman spectra 
was assigned to such a breathing mode of three oxygen atoms within each of thc BO3 
triangles. 

In contrast, Bronswijk and Strijks [SO] compared the experimental Raman spectrum of 
vitreous Bz03 with that of crystalline B203. They concluded that the spectrum of crystalline 
BzO, does not show a strong, sharp and polarized band around 806 cm-’ (see figure IO). 

Since the structures discussed in the previous section contain a high percentage of 
boroxol rings, lattice dynamics simulations were performed for the B203-I crystal, and 
for Bz03-a and BzO3-d pseudo-super-crystals using potential C2 employing the GULP 
program [51]. Energy minimization, i.e. adjustment of unit cell dimensions and internal 



Computer modelling ofBz03: p a n  I 8687 

~ 

I I \ I  I I i I I I I 1 I ' 

0 0 
0 0 s w  

CO) 
c 

N - 
Figure 10. Experimentd Raman spectra [50] for (a) vitreous BzO, and (b) crysrdline BaOl-I. 

atomic coordinates, had already been performed, following which the vibrational frequencies 
could be calculated by diagonalizing the dynamical matrix (i.e. the matrix of the second 
derivatives of energy with respect to atomic coordinates) [5]. In addition, we employ the 
quasi-harmonic approximation which assumes that the vibrational motion in the solid is 
comprised of independent quantized harmonic oscillators whose frequencies vary with cell 
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Figure 12. Symmetnc vibrational modes of the 'free' 
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volume [52]. This assumption allows us to calculate the Frequencies at the finite temperature 
albeit approximately and without explicit inclusion of anharmonic effects. The calculated 
vibrational densities of states at 300 K are shown in figure 1 I .  

We note first that in  the spectrum of B203-I, there is a sharp peak at around 750 cm-I 
(see the position A in figure 10(a)). It can be assigned to a bending mode in the chain 
structure [53], and is close to the experimental wavenumber of 720 cm-'. There is no peak 
at 806 cm-'. However, in the spectrum of Bz03-a, the peak at -750 cm-l disappears 
being replaced by a new peak at -820 cm-I (see position B in figure 10(b)), which can be 
assigned to the breathing mode of B3O6 (u2;  see figure 12), and is close to the experimental 
wavenumber 806 cm-I. In the spectrum of Bz03-d, which may be closest to the vitreous 
B203, there is no peak at around 750 cm-], although the structure includes BO3 units. It 
shows the peak at -820 cm-I, although it  is a little weaker than in the case of B203-a. 

These results therefore support the hypothesis that the peak at 806 cm-' in the 
experimental Raman spectrum in vitreous BzO:, can be assigned to the breathing mode 
of B3O6 units, although there are two remaining problems. The first is that the potential 
used (CZ) was not adjusted in order to reproduce the vibrational Frequencies and there is 
therefore a small offset in the calculated wavenumber. Secondly the structure OF the pseudo- 
super-crystal (BzOl-d) must of course differ from the vitreous structure of B203. However, 
even if this structure were more distorted, its vibrational properties should not be markedly 
different. as long as there is the same fraction of boroxol rings in the structure. 

8. Conclusions and summary 

Our LP fitting method, which has been applied to crystals and molecular clusters of B203, 
has yielded several sets of potentials which can reproduce crystal structures or molecular 
structures. 

We found first that it is essential to employ a partial charge model with a B-0 Morse 
potential and a B-O-B bond-bending, three-body term in order to reproduce both crystal 
slnctures accurately. Moreover, to reproduce the order of energies in different phases. new 
potentials (CI and C2), which depend on the coordination number around the oxygen atoms 
have been developed. When we compare the 'molecular' potentials with the 'crystalline' 
potentials. both potential sets Failed when applied to both the crystal and molecular structures 
simultaneously. The results also showed that different values for the B-O Morse potential 
and the force constant for B-O-B were derived for the crystal and molecular states in a 
manner which can be understood in terms of changes in the degree of ionic bonding 

Finally, several new possible polymorphs OF B203 were obtained by performing static 
lattice simulations using potential C2, which can reproduce not only the structures but also 
the order of the lattice energies of Bz03 crystals. B203-d is the first structural model for 
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the basic unit of vitreous BzO3, which can reproduce not only the B-O bond lengths and 
the B-0-B bond angles. but also the density, with 75% of boron atoms in boroxol rings. 
The lattice dynamic simulations using this structure (and potential C2) also showed that the 
peak of the experimental Raman peak at 806 cm-' can be assigned to the breathing mode 
of the boroxol rings. The important feature in this structure is thought to be the interlocking 
three-dimensional networks with two or three BO3 units connecting the B306 units. More 
extensive 'computer synthesis' will enable us to obtain further possible candidates for 
polymorphs and vitreous structures. The subsequent paper in this series will explore the 
generation of structures for vitreous B203 using MD techniques. 
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Appendix. Periodic ab inirio Hartree-Fock calculations 

Table A l .  Polenual energies with different lattice parameters for 8203-1 and 6203-11. All 
energics are relative values to lhe energy in the experimental stnxtux, U. U ,  h and c indicate 
cell volume and three lattice constants. Suffix 0 indicates an experimentally observed value. @ 
indicates a minimum point. 

1.005 
1.000 
0.995 
0.990 
0.980 
(2) alflo 
1.02 
1.01 
1.00 
0.99 
(3) hlbo 
1.02 
1.01 
1.00 
0.98 
(4) clco 
1.02 
1.01 
1.00 
0.99 
0.98 

t 0.0709 
t 0.0056 -0.0058 
-0.0052@ -0.01 19@ 

0.0 0.0 
+ 0.0209 t 0.0271 
+ 0.0570 t 0.0744 
+0.1799 

+ 0.0371 -0.0179 
+ 0.000s -0.0197@ 
O.O@ 0.0 

t 0.0349 t0.0419 

t 0.0137 
-0.0001@ 
0.0 

t 0.0431 

-0.0037 + 0.0269 
-0.0055@ + 0.0057 
0.0 O.O@ 

+ 0.0351 
+ 0.0323 

In order to calculate the ab initio potential energy for geometries around the stable crystal 
structures of B203,  we employed the periodic ab initio Hartree-Fock code CRYSTAL92 
P O I .  
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We used the 3-21G basis set and reoptimized the exponents of the outer shell [13, 
541. The reoptimized exponents were 0.15 and 0.40 for the boron and oxygen atom 
respectively. Next, the total energies were calculated, varying the lattice parameters around 
the experimental crystal structures of both B203. The results are given in table Al .  
The errors in the lattice parameters, compared with the experimentally observed values, 
were 1.5% for Bz03-I and 1.5% for B20j-LI [Z]. Thus the calculations reproduce the 
corresponding experimental unit cell dimensions well for both structures. The calculated 
ab initio potential energy data were used in the LP fitting. 
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